Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2016

Double-Hydrophilic Block Copolymer as an Environmentally Friendly Inhibitor for Calcium Sulfate Dehydrate (Gypsum) Scale in Cooling Water Systems

Doppelt hydrophiles Block-Copolymer als umweltfreundlicher Calciumsulfatdehydrat (Gips)-Inhibitor für Kühlwassersyteme
  • Chenguang She , Yuming Zhou , Jin Hou , Qingzhao Yao , Ning Li , Shuaishuai Ma , Zhilan Cai , Shuang Liang , Zhuang Wang , Daibao Zhu , Yanmei Liu and Guangqing Liu

Abstract

In this study, a novel environmentally friendly copolymer acrylic acid-itaconic acid-allylpolyethoxy maleic carboxylate was synthesized and used for inhibiting the calcium sulfate dehydrate (gypsum) scale. The properties of the synthesized copolymer were characterized by Fourier-transform infrared, nuclear magnetic resonance spectroscopy and thermal gravity analysis. Also, the structure and morphology changes of scale crystals were studied by scanning electronic microscopy, transmission electron microscopy and X-ray powder diffraction analysis. The copolymer inhibition ability was evaluated by means of static scale inhibition experiments. Results show that the copolymer was effective in inhibiting the scales by changing the size and morphology of the crystals. The maximum inhibition efficiency was 99.8% at a concentration of 2 mg · L1, far more efficient than most commercial inhibitors.

Kurzfassung

In dieser Untersuchung wurde ein neues, umweltfreundliches Copolymer aus Acrylsäure-Itaconsäure-Allylpolyethoxymaleinsäurecarboxylat synthetisiert und zur Inhibierung von Kesselstein aus Calciumsulfatdehydrat (Gips) eingesetzt. Die Eigenschaften des synthetisierten Copolymers wurden mittels Fourier-Transformations-Infrarot-Spektroskopie, Kernresonanzspektroskopie und der Thermogravimetrie bestimmt. Struktur- und Morphologieänderungen der Kesselsteinkristalle wurden mit der Rasterelektronenmikroskopie, der Transmissions-Elektronenmikroskopie und der Röntgenbeugungsanalyse ermittelt. Die inhibierende Eigenschaft des Copolymers wurde mittels statischer Inhibierungsexperimente beurteilt. Die Ergebnisse machen deutlich, dass das Copolymer die Kesselsteinbildung effektiv inhibiert, indem Größe und Morphologie der Kristalle verändert wurden. Die maximale inhibierende Wirkung betrug 98,8% bei einer Copolymerdosierung von 2 mg L1. Sie war deutlich effizienter als die der meisten kommerziellen Inhibitoren.


*Correspondence address, Dr. Yuming Zhou, Southeast University, School of Chemistry and Chemical Engineering, Nanjing, 211189, P.R. China. Tel.: +862552090617, Fax: +862552090617, E-Mail:

Chenguang She (First Author), School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, Tel.: +8615150518076, E-Mail:

Yuming Zhou (Corresponding Author), School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, Tel.: +862552090617; Fax: +862552090617; E-Mail:

Jin Hou, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China; Nantong Entry-exit Inspection and Quarantine Bureau, Nantong, P.R. China, E-Mail:

Qingzhao Yao, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Ning Li, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Shuaishuai Ma, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Zhilan Cai, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Shuang Liang, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Zhuang Wang, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Daibao Zhu, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Yanmei Liu, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China, E-Mail:

Guangqing Liu, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P.R. China; School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing, P.R. China, E-Mail:


References

1. Saleah, A. O. and Basta, A. H.: Evaluation of some organic-based biopolymers as green inhibitors for calcium sulfate scales. The Environmentalist28 (2008) 421428. 10.1007/s10669-008-9163-7Search in Google Scholar

2. Xyla, A. G., Mikroyannidis, J. and Koutsoukos, P. G.: The Inhibition of Calcium-Carbonate Precipitation in Aqueous-Media by Organophosphorus Compounds. J. Colloid Interf. Sci.153 (1992) 537551. 10.1016/0021-9797(92)90344-LSearch in Google Scholar

3. Hasson, D., Shemer, H. and Sher, A.: State of the Art of Friendly “Green” Scale Control Inhibitors; A Review Article. Ind. Eng. Chem. Res.50 (2011) 76017607. 10.1021/Ie200370vSearch in Google Scholar

4. Rahardianto, A., Shih, W. Y., Lee, R. W. and Cohen, Y.: Diagnostic characterization of gypsum scale formation and control in RO membrane desalination of brackish water. J. Membr. Sci.279 (2006) 655668. 10.1016/j.memsci.2005.12.059Search in Google Scholar

5. Tang, Y. M., Yang, W. Z., Yin, X. S., Liu, Y., Yin, P. W. and Wang, J. T.: Investigation of CaCO3 scale inhibition by PAA, ATMP and PAPEMP. Desalination228 (2008) 5560. 10.1016/j.desal.2007.08.006Search in Google Scholar

6. Amjad, Z.: Effect of surfactants on gypsum scale inhibition by polymeric inhibitors. Desalin. Water Treat.36 (2011) 270279. 10.5004/dwt.2011.2564Search in Google Scholar

7. Tomson, M. B. and Nancollas, G. H.: Mineralization Kinetics – Constant Composition Approach. Science200 (1978) 10591060. 10.1126/science.200.4345.1059Search in Google Scholar PubMed

8. Demadis, K. D., Mantzaridis, C., Raptis, R. G. and Mezel, G.: Metal-organotetraphosphonate inorganic-organic hybrids: Crystal structure and anticorrosion effects of zinc hexamethylenediaminetetrakis(methylenephosphonate) on carbon. Inorg. Chem.44 (2005) 44694471. 10.1021/Ic050572qSearch in Google Scholar

9. Amar, H., Braisaz, T., Villemin, D. and Moreau, B.: Thiomorpholin-4-ylmethyl-phosphonic acid and morpholin-4-methyl-phosphonic acid as corrosion inhibitors for carbon steel in natural seawater. Mater. Chem. Phys.110 (2008) 16. 10.1016/j.matchemphys.2007.10-001Search in Google Scholar

10. Sathiyanarayanan, S., Azim, S. and Venkatachari, G.: Performance studies of phosphate-doped polyaniline containing paint coating for corrosion protection of aluminium alloy. J. Appl. Polym. Sci.107 (2008) 22242230. 10.1002/App.27254Search in Google Scholar

11. Khodyrev, Y. P., Batyeva, E. S., Badeeva, E. K., Platova, E. V., Tiwari, L. and Sinyashin, O. G.: The inhibition action of ammonium salts of O,O′-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel. Corros. Sci.53 (2011) 976983. 10.1016/j.corsci.2010.11.030Search in Google Scholar

12. Laamari, R., Benzakour, J., Berrekhis, F., Abouelfida, A., Derja, A. and Villemin, D.: Corrosion inhibition of carbon steel in hydrochloric acid 0.5 M by hexamethylene diamine tetramethyl-phosphonic acid. Arab. J. Chem.4 (2011) 271277. 10.1016/j.arabjc.2010.06.046Search in Google Scholar

13. Zang, D. M., Cao, D. K. and Zheng, L. M.: Strontium and barium 4-carboxylphenylphosphonates: Hybrid anti-corrosion coatings for magnesium alloy. Inorg. Chem. Commun.14 (2011) 19201923. 10.1016/j.inoche.2011.09.011Search in Google Scholar

14. Amjad, Z.: Constant-Composition Study of Dicalcium Phosphate Dihydrate Crystal-Growth in the Presence of Poly(Acrylic Acids). Langmuir5 (1989) 12221225. 10.1021/La00089a017Search in Google Scholar

15. Tsortos, A. and Nancollas, G. H.: The role of polycarboxylic acids in calcium phosphate mineralization. J. Colloid. Interf. Sci.250 (2002) 159167. 10.1006/jcis.2002.8323Search in Google Scholar PubMed

16. Zhang, B. R., Zhang, L., Li, F. T., Hu, W. and Hannam, P. M.: Testing the formation of Ca-phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water. Corros. Sci.52 (2010) 38833890. 10.1016/j.corsci.2010.07.037Search in Google Scholar

17. Nederlof, M. M., van Paassen, J. A. M. and Jong, R.: Nanofiltration concentrate disposal: experiences in the Netherlands. Desalination178 (2005) 303312. 10.1016/j.desal.2004.11.041Search in Google Scholar

18. Du, K., Zhou, Y. M., Wang, L. Q. and Wang, Y. Y.: Fluorescent-Tagged No Phosphate and Nitrogen Free Calcium Phosphate Scale Inhibitor for Cooling Water Systems. J. Appl. Polym. Sci.113 (2009) 19661974. 10.1002/App.30213Search in Google Scholar

19. Steckler, R.: US Patent. (1975) 3,875,202.Search in Google Scholar

20. Dietzsch, M., Barz, M., Schueler, T., Klassen, S., Schreiber, M., Susewind, M., Loges, N., Lang, M., Hellmann, N., Fritz, M., Fischer, K., Theato, P., Kuhnle, A., Schmidt, M., Zentel, R. and Tremel, W.: PAA-PAMPS Copolymers as an Efficient Tool to Control CaCO3 Scale Formation. Langmuir29 (2013) 30803088. 10.1021/La4000044Search in Google Scholar

21. Fu, C. G., Zhou, Y. M., Liu, G. Q., Huang, J. Y., Sun, W. and Wu, W. D.: Inhibition of Ca-3(PO4)(2), CaCO3, and CaSO4 Precipitation for Industrial Recycling Water. Ind. Eng. Chem. Res.50 (2011) 1039310399. 10.1021/Ie200051rSearch in Google Scholar

22. Celik, S. U. and Bozkurt, A.: PEG crosslinked poly(vinylbenzene boronic acid) polymer electrolytes for Li-ion batteries. Curr. Appl. Phys.13 (2013) 16681673. 10.1016/j.cap.2013.06.009Search in Google Scholar

23. Howie-Meyers, C. L., Yu, K. E. D., Vasudevan, T., Aronson, M. P., Ananthapadmanabhan, K. P. and Somassundaran, P.: In Mineral Scale Formation and Inhibition. ZahidAmjad; Plenum press, New York (1995) 169182. 10.1007/978-1-4899-1400-2_15Search in Google Scholar

24. Li, M. C., Lee, J. K. and Cho, U. R.: Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films. J. Appl. Polym. Sci.125 (2012) 405414. 10.1002/App.35620Search in Google Scholar

25. Amjad, Z., Pugh, J., Zibrida, J. and Zuhl, B.: Polymer performance in cooling water: The influence of process variables. Mater. Performance36 (1997) 3238.Search in Google Scholar

26. Kavitha, A. L., Vasudevan, T. and Prabu, H. G.: Evaluation of synthesized antiscalants for cooling water system application. Desalination268 (2011) 3845. 10.1016/j.desal.2010.09.047Search in Google Scholar

27. Cao, K., Zhou, Y. M., Liu, G. H., Wang, H. C. and Sun, W.: Preparation and Properties of a Polyether-Based Polycarboxylate as an Antiscalant for Gypsum. J. Appl. Polym. Sci. (2014). 10.1002/app.40193Search in Google Scholar

28. Shankar, R.: Renormalization-Group Approach to Interacting Fermions. Rev. Mod. Phys.66 (1994) 129192. 10.1103/RevModPhys.66.129Search in Google Scholar

29. Ling, Y. B. and Demopoulos, G. P.: Preparation of alpha-calcium sulfate hemihydrate by reaction of sulfuric acid with lime. Ind. Eng. Chem. Res.44 (2005) 715724. 10.1021/Ie049316wSearch in Google Scholar

30. Bu, Y., Zhou, Y., Yao, Q., Chen, Y., Sun, W. and Wu, W.: Inhibition of calcium carbonate and sulfate scales by a non-phosphorus terpolymer AA-APEY-AMPS. Desalin. Water Treat. (2014) 111. 10.1080/19443994.2014.979443Search in Google Scholar

31. Wang, H., Zhou, Y., Yao, Q., Bu, Y., Chen, Y. and Sun, W.: Study on Calcium Scales Inhibition Performance in the Presence of Double-Hydrophilic Copolymer. Int. J. Polym. Mater. Po.64 (2014) 205213. 10.1080/00914037.2014.936592Search in Google Scholar

32. Liu, G. Q., Huang, J. Y., Zhou, Y. M., Yao, Q. Z., Ling, L., Zhang, P. X., Fu, C. G., Wu, W. D., Sun, W. and Hu, Z. J.: Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer Dispersant for Calcium Carbonate and Iron(III) Hydroxide Scales in Cooling Water Systems. Tenside Surfact. Det.49 (2012) 216224. 10.3139/113.110185Search in Google Scholar

33. Liu, G., Huang, J., Zhou, Y., Yao, Q., Wang, H., Ling, L., Zhang, P., Cao, K., Liu, Y., Wu, W. and Sun, W.: Carboxylate-Terminated Double-Hydrophilic Block Copolymer Containing Fluorescent Groups: An Effective and Environmentally Friendly Inhibitor for Calcium Carbonate Scales. International Journal of Polymeric Materials62 (2013) 678685. 10.1080/00914037.2013.769226Search in Google Scholar

34. Liu, Y. H., Zhou, Y. M., Yao, Q. Z., Huang, J. Y., Liu, G. Q., Wang, H. C., Cao, K., Chen, Y. Y., Bu, Y. Y., Wu, W. D. and Sun, W.: Double-Hydrophilic Polyether Antiscalant Used as a Crystal Growth Modifier of Calcium Scales in Cooling-Water Systems. J. Appl. Polym. Sci.131 (2014). Artn3979210.1002/App.39792Search in Google Scholar

35. Lee, S. and Lee, C. H.: Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Res.34 (2000) 38543866. 10.1016/S0043-1354(00)00142-1Search in Google Scholar

36. Scholz, C., Iijima, M., Nagasaki, Y. and Kataoka, K.: A Novel Reactive Polymeric Micelle with Aldehyde Groups on Its Surface. Macromolecules28 (1995) 72957297. 10.1021/Ma00125a040Search in Google Scholar

37. Harada, A. and Kataoka, K.: Novel polyion complex micelles entrapping enzyme molecules in the core. 2. Characterization of the micelles prepared at nonstoichiometric mixing ratios. Langmuir15 (1999) 42084212. 10.1021/La981087tSearch in Google Scholar

38. Liu, Y., Yuming, Z., Yao, Q., Huang, J., Liu, G., Wang, H., Cao, K., Chen, Y., Bu, Y., Wu, W. and Sun, W.: Double-Hydrophilic Polyether Antiscalant Used as a Crystal Growth Modifier of Calcium Scales in Cooling-Water Systems. J. Appl. Polym. Sci. (2013). 10.1002/app.39792Search in Google Scholar

Received: 2015-05-27
Accepted: 2015-09-29
Published Online: 2016-02-23
Published in Print: 2016-01-20

© 2016, Carl Hanser Publisher, Munich

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.3139/113.110408/html
Scroll to top button