Skip to main content
Log in

Density functional theory study of water-gas shift reaction on TM@Cu12 core-shell nanoclusters

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The mechanism of water-gas shift reaction on the transition metal of Co, Ni, Cu (from the 3d row), Rh, Pd, Ag (from the 4d row), Ir, Pt, and Au (from the 5d row) @Cu12 bimetallic clusters have been studied using density functional theory (DFT) calculations. Three reaction mechanisms including redox, carboxyl, and formate mechanisms, which are equal to CO* + O* → CO2 (g), CO* + OH* → COOH* → CO2 (g) + H*, and CO* + H* + O* → CHO* + O* → HCOO** → CO2 (g) + H*, respectively, have been studied. The result revealed that the WGSR prefer to follow the carboxyl mechanism on the TM@Cu12 surfaces. The rate-controlling step of WGS reaction is H2O dissociation into OH and H or COOH decomposition into CO and OH. The transition metal additive in Cu cluster could enhance the activity of water dissociation, which is beneficial for WGS reaction. Especially, doping Ni has the largest promotion effect in reducing the active barrier, the reason is electronic effect. The calculation indicates that Ni@Cu12 is thus the promising candidates for improved WGSR catalysts. In addition, The TOF values are studied to estimate effectively activity of the TM@Cu12 cluster. To get insight into conclusion, reaction mechanism and structure of cluster was elucidated by the relative energy profiles and detailed electronic local density of states (LDOS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, W.Y. and Hensen, E.J.M., ACS Catal., 2014, vol. 4, p. 1885.

    Article  Google Scholar 

  2. Azzam, K.G., Babich, I.V., Seshan, K., and Lefferts, L., Appl. Catal. B, 2008, vol. 80, p. 129.

    Article  Google Scholar 

  3. Tao, F. and Ma, Z., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 15260.

    Article  Google Scholar 

  4. Yang, Z.X., Xie, L.G., Ma, D.W., and Wang, G.T., J. Phys. Chem. C, 2011, vol. 115, p. 6730.

    Article  Google Scholar 

  5. Lin, C.H., Chen, C.L., and Wang, J.H., J. Phys. Chem. C, 2011, vol. 115, p. 18582.

    Article  Google Scholar 

  6. Yang, L., Karim, A., and Muckerman, J.T., J. Phys Chem C, 2013, vol. 117, p. 3414.

    Article  Google Scholar 

  7. Meunier, F.C., Reid, D., Goguest, A., Shekhtman, S., Hardacre, C., Burch, R., Deng, W., and Flytzani-Stephanopoulos, M., J. Catal., 2007, vol. 247, p. 277.

    Article  Google Scholar 

  8. Gokhale, A.A., Dumesic, J.A., and Mavrikakis, M., J. Am. Chem. Soc., 2008, vol. 130, p. 1402.

    Article  Google Scholar 

  9. Kalamaras, C.M., Panagiotopoulou, P., Kondarides, D.I., and Efstathiou, A.M., J. Catal., 2009, vol. 264, p. 117.

    Article  Google Scholar 

  10. Kalamaras, C.M., Americanou, S., and Efstathiou, A.M., J. Catal., 2011, vol. 279, p. 287.

    Article  Google Scholar 

  11. Aguila, G., Guerrero, S., and Araya, P., Catal. Commun., 2008, vol. 9, p. 2550.

    Article  Google Scholar 

  12. Gokhale, A.A., Dumestic, J.A., and Mavrikakis, M., J. Am. Chem. Soc., 2008, vol. 130, p. 1402.

    Article  Google Scholar 

  13. Tang, Q.L. and Liu, Z.P., J. Phys. Chem. C, 2010, vol. 114, p. 8423.

    Article  Google Scholar 

  14. Tang, Q.L., Chen, Z.X., and He, X., Surf. Sci., 2009, vol. 603, p. 2138.

    Article  Google Scholar 

  15. José, L.C., Fajín, M., Natália, D.S., Cordeiro, F., José, R.B., and Gomes, J., J. Catal., 2009, vol. 268, p. 131.

    Article  Google Scholar 

  16. Wang, G., Jiang, L., Cai, Z., Pan, Y., Zhao, X., Huang, W., Xie, K., Li, Y., Sun, Y., and Zhong, B., J. Phys. Chem. B, 2003, vol. 107, p. 557.

    Article  Google Scholar 

  17. Vidal, A.B. and Liu, P., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 16626.

    Article  Google Scholar 

  18. Fu, Q., Deng, W., Saltsburg, H., and Flytzani-Stephanopoulos, M., Appl. Catal. B, 2005, vol. 56, p. 57.

    Article  Google Scholar 

  19. Lin, R.J., Chen, H.L., Ju, S.P., Li, F.Y., and Chen, H.T., J. Phys. Chem. C, 2012, vol. 116, p. 336.

    Article  Google Scholar 

  20. Huang, S.C., Lin, C.H., and Wang, J.H., J. Phys. Chem. C, 2010, vol. 114, p. 9826.

    Article  Google Scholar 

  21. Chen, Y.Y., Dong, M., Wang, J.G., and Jiao, H.J, J. Phys. Chem. C, 2012, vol. 116, p. 25368.

    Article  Google Scholar 

  22. Wu, S.R., Lin, R.J., Jang, S.M., Chen, H.L., Wang, S.M., and Li, F.Y., J. Phys. Chem., C, 2014, vol. 118, p. 298.

    Article  Google Scholar 

  23. Rodriguez, J.A., Catal. Today, 2011, vol. 160, p. 3.

    Article  Google Scholar 

  24. Lin, J.H. and Guliants, V.V., Appl. Catal., A, 2012, vol. 445, p. 187.

    Article  Google Scholar 

  25. Fu, Z.M., Wang, J.Q., Zhang, N., An, Y.P., and Yang, Z.X., Int. J. Hydrogen Energy., 2015, vol. 40, p. 2193.

    Article  Google Scholar 

  26. Lin, C.H., Chen, C.L., and Wang, J.H., J. Phys. Chem. C, 2011, vol. 115, p. 18582.

    Article  Google Scholar 

  27. Phatak, A.A., Delgass, W.N., Ribeiro, F.H., and Schneider, W.F., J. Phys. Chem. C, 2009, vol. 113, p. 7269.

    Article  Google Scholar 

  28. Callaghan, C.A., Vilekar, S.A., Fishtik, I., and Datta, R., Appl. Catal. A, 2008, vol. 345, p. 213.

    Article  Google Scholar 

  29. Liu, P., J. Chem. Phys., 2010, vol. 133, p. 204705.

    Article  Google Scholar 

  30. Kim, H.Y., Lee, H.M., and Henkelman, G., J. Am. Chem. Soc., 2012, vol. 134, p. 1560.

    Article  Google Scholar 

  31. Yang, X., Cheng, F., Tao, Z., and Chen, J., J. Power Sources, 2011, vol. 196, p. 2785.

    Article  Google Scholar 

  32. Lin, J.H., Biswas, P., Guliants, V.V., and Misture, S., Appl. Catal., A, 2010, vol. 387, p. 87.

    Article  Google Scholar 

  33. Allian, A.D., Takanabe, K., Fujdala, K.L., Hao, X., Truex, T.J., Cai, J., Buda, C., Neurock, M., and Iglesia, E., J. Am. Chem. Soc., 2011, vol. 133, p. 4498.

    Article  Google Scholar 

  34. Gan, L.Y. and Zhao, Y.J., J. Phys. Chem. C, 2012, vol. 116, p. 16089.

    Article  Google Scholar 

  35. Gan, L.Y., Zhang, Y.X., and Zhao, Y.J., J. Phys. Chem. C, 2010, vol. 114, p. 996.

    Article  Google Scholar 

  36. Bian, J., Xiao, M., Wang, S.J., Lu, Y.X., and Meng, Y.Z., Catal. Commun., 2009, vol. 10, p. 1529.

    Article  Google Scholar 

  37. Gan, L.Y., Tian, R.Y., Yang, X.B., Lu, H.D., and Zhao, Y.J., J. Phys. Chem. C, 2012, vol. 116, p. 745.

    Article  Google Scholar 

  38. Kozuch, S. and Shaik, S., Acc. Chem. Res., 2010, vol. 44, p. 101.

    Article  Google Scholar 

  39. Perdew, J.P., Burke, K., and Ernzerhof, M., J. Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  Google Scholar 

  40. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., et al., Gaussian 09, Revision A.1, Wallingford, CT: Gaussian, 2009.

    Google Scholar 

  41. Wadt, W.R. and Hay, P.J., J. Chem. Phys., 1985, vol. 82, p. 270

    Article  Google Scholar 

  42. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 299.

    Article  Google Scholar 

  43. Wang, F., Zhang, D.J., Xu, X.H., and Ding, Y., J. Phys. Chem. C, 2009, vol. 113, p.18032.

    Article  Google Scholar 

  44. Huber, K.P. and Herzberg, G., Constants of Diatomic Molecules, New York: van Nostrand Reinhold, 1979.

    Book  Google Scholar 

  45. Amatore, C. and Jutand, A., J. Organomet. Chem., 1999, vol. 576, p. 254.

    Article  Google Scholar 

  46. An, X., Guo, L., Li, A., Liu, N., and Cao, Z., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 5, p. 740.

    Article  Google Scholar 

  47. Gunugunuri, K.R., Boolchand, P., and Panagiotis, G.S., J. Phys. Chem. C, 2012, vol. 116, p. 1109.

    Google Scholar 

  48. Guo, L. and Zhang, X., J. Phys. Chem. C, 2014, vol. 118, p. 533.

    Article  Google Scholar 

  49. Zeinalipour-Yazdi, C.D. and Efstathiou, A.M., J. Phys. Chem. C, 2008, vol. 112, p. 19030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Guo, L., Cao, Z. et al. Density functional theory study of water-gas shift reaction on TM@Cu12 core-shell nanoclusters. Prot Met Phys Chem Surf 52, 387–398 (2016). https://doi.org/10.1134/S2070205116030187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116030187

Navigation