Skip to main content
Log in

Decay of the 3D inviscid liquid–gas two-phase flow model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We establish the optimal \({L^{p}-L^{2}(1 \leq p < 6/5)}\) time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid–gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid–gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315–2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the \({L^{p}-L^{2}}\) estimates for the linearized equations and an elaborate energy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brennen C.E.: Fundamentals of Multiphase Flow. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  2. Danchin R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Danchin R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 16, 1–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Danchin R.: A global existence result for the compressible Navier–Stokes equations in the critical L p framework. Arch. Ration. Mech. Anal. 198, 233–271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deckelnick K.: L 2-Decay for the compressible Navier–Stokes equations in unbounded domains. Commun. Partial Differ. Equ. 18, 1445–1476 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan R.J., Ma H.F.: Global existence and convergence rates for the 3-D compressible Navier–Stokes equations without heat conductivity. Indiana Univ. Math. J. 5, 2299–2319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan R.J., Ukai S., Yang T., Zhao H.J.: Optimal L pL q convergence rate for the compressible Navier–Stokes equations with potential force. J. Differ. Equ. 238, 220–223 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan R.J., Ukai S., Yang T., Zhao H.J.: Optimal convergence rate for compressible Navier–Stokes equations with potential force. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evje S.: Weak solutions for a gas–liquid model relevant for describing gas-kick in oil wells. SIAM J. Appl. Math. 43, 1887–1922 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evje S.: Global weak solutions for a compressible gas–liquid model with well-formation interaction. J. Differ. Equ. 251, 2352–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evje S., Flåtten T.: Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192, 175–210 (2003)

    Article  MATH  Google Scholar 

  12. Evje S., Flåtten T.: On the wave structure of two-phase flow models. SIAM J. Appl. Math. 67, 487–511 (2006)

    Article  MathSciNet  Google Scholar 

  13. Evje S., Flåtten T., Friis H.A.: Global weak solutions for a viscous liquid–gas model with transition to single-phase gas flow and vacuum. Nonlinear Anal. 70, 3864–3886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Evje S., Karlsen K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245, 2660–2703 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evje S., Karlsen K.H.: Global weak solutions for a viscous liquid–gas model with singular pressure law. Commun. Pure Appl. Anal. 8, 1867–1894 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan L., Liu Q.Q., Zhu C.J.: Convergence rates to stationary solutions of a gas–liquid model with external forces. Nonlinearity 27, 2875–2901 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Friis H.A., Evje S., Flåtten T.: A numerical study of characteristic slow-transient behavior of a compressible 2D gas–liquid two-fluid model. Adv. Appl. Math. Mech. 1, 166–200 (2009)

    MathSciNet  Google Scholar 

  18. Guo Y., Wang Y.J.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo Z.H., Yang J., Yao L.: Global strong solution for a three-dimensional viscous liquid–gas two-phase flow model with vacuum. J. Math. Phys. 52, 093102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hao C.C., Li H.L.: Well-posedness for a multidimensional viscous liquid–gas two-phase flow model. SIAM J. Math. Anal. 44(3), 1304–1332 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoff D.: Pointwise decay estimates for multidimensional Navier–Stokes diffusion waves. Z. Angew. Math. Phys. 48, 597–614 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hou X.F., Wen H.Y.: A blow-up criterion of strong solutions to a viscous liquid–gas two-phase flow model with vacuum in 3D. Nonlinear Anal. 75, 5229–5237 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ishii M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975)

    MATH  Google Scholar 

  25. Ju N.: Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kawashima, S., Okada, M.: Smooth Global Solutions for the One-Dimensional Equations in Magnetohydrodynamics. Kyoto University (1983)

  27. Kobayashi T.: Some estimates of solutions for the equations of compressible viscous fluid in an exterior domain in \({{\mathbb{R}^{3}}}\). J. Differ. Equ. 184, 587–619 (2002)

    Article  MATH  Google Scholar 

  28. Kobayashi T., Shibata Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \({{\mathbb{R}^{3}}}\). Commun. Math. Phys. 200, 621–659 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li H.L., Zhang T.: Large time behavior of isentropic compressible Navier–Stokes system in \({{\mathbb{R}^{3}}}\). Math. Methods Appl. Sci. 34(6), 670–682 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu T.P., Wang W.K.: The pointwise estimates of diffusion waves for Navier–Stokes equations in odd multi-dimensions. Commun. Math. Phys. 196, 145–173 (1998)

    Article  MATH  Google Scholar 

  31. Liu T.P., Zeng Y.: Compressible Navier–Stokes equations with zero heat conductivity. J. Differ. Equ. 153, 225–291 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu Q.Q., Zhu C.J.: Asymptotic behavior of a viscous liquid–gas model with mass-dependent viscosity and vacuum. J. Differ. Equ. 252, 2492–2519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Matsumura A., Nishida T.: The initial value problems for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci. 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matsumura A., Nishida T.: The initial value problems for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  35. Matsumura A., Nishida T.: Initial boundary value problem for equations of motion of compressible viscous and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  37. Pan R.H., Zhao K.: The 3D compressible Euler equations with damping in a bounded domain. J. Differ. Equ. 246, 581–596 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sideris T.C., Thomases B., Wang D.H.: Long time behavior of solutions to the 3D compressible Euler equations with damping. Commun. Partial Differ. Equ. 28, 795–816 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tan Z., Wang Y.: Global solution and large-time behavior of the 3D compressible Euler equations with damping. J. Differ. Equ. 254, 1686–1704 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tan Z., Wu G.C.: Large time behavior of solutions for compressible Euler equations with damping in \({{\mathbb{R}^{3}}}\). J. Differ. Equ. 252, 1546–1561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang Y.J.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253, 273–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang W.K., Yang T.: The pointwise estimates of solutions for Euler-equations with damping in multi-dimensions. J. Differ. Equ. 173, 410–450 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wen H.Y., Yao L., Zhu C.J.: A blow-up criterion of strong solution to a 3D viscous liquid–gas two-phase flow model with vacuum. J. Math. Pures Appl. 97, 204–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yao L., Zhu C.J.: Free boundary value problem for a viscous two-phase model with mass-dependent viscosity. J. Differ. Equ. 247, 2705–2739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yao L., Zhu C.J.: Existence and uniqueness of global weak solution to a two-phase flow model with vacuum. Math. Ann. 349, 903–928 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yao L., Yang J., Guo Z.H.: Blow-up criterion for 3D viscous liquid–gas two-phase flow model. J. Math. Anal. Appl. 395, 175–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yao L., Zhang T., Zhu C.J.: Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid–gas two-phase flow model. SIAM J. Math. Anal. 42, 1874–1897 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yao L., Zhang T., Zhu C.J.: A blow-up criterion for a 2D viscous liquid–gas two-phase flow model. J. Differ. Equ. 250, 3362–3378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yao L., Zhu C.J., Zi R.Z.: Incompressible limit of viscous liquid–gas two-phase flow model. SIAM J. Math. Anal. 44, 3324–3345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang T.: Global solution of compressible Navier–Stokes equation with a density-dependent viscosity coefficient. J. Math. Phys. 52, 043510 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang Y.H., Zhu C.J.: Global existence and optimal convergence rates for the strong solutions in H 2 to the 3D viscous liquid–gas two-phase flow model. J. Differ. Equ. 258, 2315–2338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Decay of the 3D inviscid liquid–gas two-phase flow model. Z. Angew. Math. Phys. 67, 54 (2016). https://doi.org/10.1007/s00033-016-0658-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0658-7

Mathematics Subject Classification

Keywords

Navigation