Skip to main content
Log in

Decrease of glial cell-derived neurotrophic factor contributes to anesthesia- and surgery-induced learning and memory dysfunction in neonatal rats

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Long duration of anesthesia may induce toxicity in the developing brain. However, little is known about the effects of the combination of surgery and anesthesia on the developing brain. The mechanisms for the effects are not clear. To determine these effects, postnatal day 7 male and female Sprague-Dawley rats were exposed to 3% sevoflurane for 2 h with or without right common carotid exposure. Pyrrolidine dithiocarbamate (PDTC), an anti-inflammatory agent, was given 30 min before and 6 h after the carotid exposure. Anti-glial cell-derived neurotrophic factor (GDNF) antibody or GDNF was given at the end of sevoflurane exposure. We found that anesthesia-surgery induced learning and memory impairment assessed by Barnes maze and fear conditioning. Anesthesia-surgery also induced neuroinflammation and reduced the level of glial cell-derived neurotrophic factor (GDNF, 10.6 ± 0.6 pg/mg protein of control rats vs. 7.7 ± 0.4 pg/mg protein of anesthesia-surgery rats, n = 17, p = 0.007) and neurogenesis in the hippocampus. PDTC inhibited these surgical effects (GDNF level 9.7 ± 0.6 pg/mg protein of anesthesia-surgery plus PDTC rats, n = 17, p = 0.763 vs. control rats). Intracerebroventricular injection of an anti-GDNF antibody but not its heat-inactivated form induced learning and memory impairment in control rats. Intracerebroventricular injection of GDNF attenuated learning and memory impairment after anesthesia-surgery. We conclude that anesthesia-surgery in neonatal rats induces neuroinflammation, which then leads to a decreased level of GDNF and neurogenesis in the hippocampus and cognitive impairment. GDNF decrease plays an important role in anesthesia-surgery-induced cognitive impairment.

Key message

  • Anesthesia-surgery in neonatal rats induces neuroinflammation.

  • Neuroinflammation leads to decreased levels of GDNF.

  • Neuroinflammation reduces hippocampal neurogenesis and induces cognitive impairment.

  • GDNF decrease is important for anesthesia-surgery-induced cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiao S, Zuo Z (2014) A double-edged sword: volatile anesthetic effects on the neonatal brain. Brain Sci 4:273–294

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118:502–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu Y, Huang Y, Jiang J, Hu R, Yang Y, Jiang H, Yan J (2016) Neuronal apoptosis may not contribute to the long-term cognitive dysfunction induced by a brief exposure to 2% sevoflurane in developing rats. Biomed Pharmacother 78:322–328

    Article  CAS  PubMed  Google Scholar 

  4. Yang B, Liang G, Khojasteh S, Wu Z, Yang W, Joseph D, Wei H (2014) Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane. PLoS One 9:e99171

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cao L, Li L, Lin D, Zuo Z (2012) Isoflurane induces learning impairment that is mediated by interleukin 1beta in rodents. PLoS One 7:e51431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS et al (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68:360–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Jiang W, Zuo Z (2014) Pyrrolidine dithiocarbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor kappaB. Neurosci 261:1–10

    Article  CAS  Google Scholar 

  8. Fang F, Xue Z, Cang J (2012) Sevoflurane exposure in 7-day-old rats affects neurogenesis, neurodegeneration and neurocognitive function. Neurosci Bull 28:499–508

    Article  CAS  PubMed  Google Scholar 

  9. Fan D, Li J, Zheng B, Hua L, Zuo Z (2016) Enriched environment attenuates surgery-induced impairment of learning, memory, and neurogenesis possibly by preserving BDNF expression. Mol Neurbiol 53:344–354

    Article  CAS  Google Scholar 

  10. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  Google Scholar 

  11. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sakamoto M, Imayoshi I, Ohtsuka T, Yamaguchi M, Mori K, Kageyama R (2011) Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. Proc Natl Acad Sci U S A 108:8479–8484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang B, Jin K (2015) Current perspectives on the link between neuroinflammation and neurogenesis. Metab Brain Dis 30:355–365

    Article  CAS  PubMed  Google Scholar 

  14. Song C, Zhang Y, Dong Y (2013) Acute and subacute IL-1beta administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration. J Neuroinflammation 10:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Tan H, Jiang W, Zuo Z (2015) The choice of general anesthetics may not affect neuroinflammation and impairment of learning and memory after surgery in elderly rats. Journal Neuroimmune Pharm 10:179–189

    Article  Google Scholar 

  16. Lee JJ, Li L, Jung H-H, Zuo Z (2008) Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology 108:1055–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao P, Peng L, Li L, Xu X, Zuo Z (2007) Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology 107:963–970

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Tan H, Jiang W, Zuo Z (2014) Amantadine alleviates postoperative cognitive dysfunction possibly by increasing glial cell line-derived neurotrophic factor in rats. Anesthesiology 121:773–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165

    Article  CAS  PubMed  Google Scholar 

  20. Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, Blumcke I (1996) NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem 44:1167–1171

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, Miyoshi Y, Lapchak PA, Collins F, Hilt D, Lebel C, Kryscio R, Gash DM (1997) Dose response to intraventricular glial cell line-derived neurotrophic factor administration in parkinsonian monkeys. J Pharmacol Exp Ther 282:1396–1401

    CAS  PubMed  Google Scholar 

  22. Lapchak PA, Jiao S, Collins F, Miller PJ (1997) Glial cell line-derived neurotrophic factor: distribution and pharmacology in the rat following a bolus intraventricular injection. Brain Res 747:92–102

    Article  CAS  PubMed  Google Scholar 

  23. Zhou L, Wang Z, Zhou H, Liu T, Lu F, Wang S, Li J, Peng S, Zuo Z (2015) Neonatal exposure to sevoflurane may not cause learning and memory deficits and behavioral abnormality in the childhood of cynomolgus monkeys. Sci Rep 5:11145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang Y, Tong D, Hofacer RD, Loepke AW, Lian Q, Danzer SC (2016) Long-term fate mapping to assess the impact of postnatal isoflurane exposure on hippocampal progenitor cell productivity. Anesthesiology 125:1159–1170

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Zhao H, Peng S, Zuo Z (2013) Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats. Exp Neurol 249:74–82

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Yin J, Li L, Deng J, Feng C, Zuo Z (2013) Isoflurane postconditioning reduces ischemia-induced nuclear factor-kappaB activation and interleukin 1beta production to provide neuroprotection in rats and mice. Neurobiol Dis 54:216–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O (2006) Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 37:2361–2367

    Article  CAS  PubMed  Google Scholar 

  28. Rocha SM, Cristovao AC, Campos FL, Fonseca CP, Baltazar G (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol Dis 47:407–415

    Article  CAS  PubMed  Google Scholar 

  29. Chen SH, Oyarzabal EA, Sung YF, Chu CH, Wang Q, Chen SL, Lu RB, Hong JS (2015) Microglial regulation of immunological and neuroprotective functions of astroglia. Glia 63:118–131

    Article  PubMed  Google Scholar 

  30. Stary CM, Sun X, Giffard RG (2015) Astrocytes protect against isoflurane neurotoxicity by buffering pro-brain-derived neurotrophic factor. Anesthesiology 123:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuo Z (2001) Isoflurane enhances glutamate uptake via glutamate transporters in rat glial cells. Neuroreport 12:1077–1080

    Article  CAS  PubMed  Google Scholar 

  32. Robinson MB (1999) The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtypes. Neurochem Int 33:479–491

    Article  Google Scholar 

  33. Yin J, Li H, Feng C, Zuo Z (2014) Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection. CNS NEUROL DISORD-DR 13:718–732

    Article  CAS  Google Scholar 

  34. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, Kazama T (2016) Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep 6:21859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tao G, Zhang J, Zhang L, Dong Y, Yu B, Crosby G, Culley DJ, Zhang Y, Xie Z (2014) Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3beta activation in young mice. Anesthesiology 121:510–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, Kamhi JF, Cameron HA (2009) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 29:14484–14495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willing J, Drzewiecki CM, Cuenod BA, Cortes LR, Juraska JM (2016) A role for puberty in water maze performance in male and female rats. Behav Neurosci 130:422–427

    Article  PubMed  Google Scholar 

  38. Drzewiecki CM, Willing J, Juraska JM (2016) Synaptic number changes in the medial prefrontal cortex across adolescence in male and female rats: a role for pubertal onset. Synapse 70:361–368

    Article  CAS  PubMed  Google Scholar 

  39. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  PubMed Central  Google Scholar 

  40. DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G (2009) A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol 21:286–291

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dimaggio C, Sun LS, Li G (2011) Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 113:1143–1151

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, Sprung J, Weaver AL, Schroeder DR, Warner DO (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110:805–812

    Article  PubMed  Google Scholar 

  44. Bartels M, Althoff RR, Boomsma DI (2009) Anesthesia and cognitive performance in children: no evidence for a causal relationship. Twin Res Hum Genet 12:246–253

    Article  PubMed  Google Scholar 

  45. Hansen TG, Pedersen JK, Henneberg SW, Morton NS, Christensen K (2013) Educational outcome in adolescence following pyloric stenosis repair before 3 months of age: a nationwide cohort study. Paediatr Anaesth 23:883–890

    Article  PubMed  Google Scholar 

  46. Hansen TG, Pedersen JK, Henneberg SW, Pedersen DA, Murray JC, Morton NS, Christensen K (2011) Academic performance in adolescence after inguinal hernia repair in infancy: a nationwide cohort study. Anesthesiology 114:1076–1085

    Article  PubMed  Google Scholar 

  47. Davidson AJ, Disma N, de Graaff JC, Withington DE, Dorris L, Bell G, Stargatt R, Bellinger DC, Schuster T, Arnup SJ et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250

    Article  PubMed  Google Scholar 

  48. Sun LS, Li G, Miller TL, Salorio C, Byrne MW, Bellinger DC, Ing C, Park R, Radcliffe J, Hays SR et al (2016) Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA 315:2312–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Zuo.

Ethics declarations

Grant support

This study was supported by grants (GM098308 and NS094030 to Z Zuo) from the National Institutes of Health, Bethesda, MD, the Robert M. Epstein Professorship endowment, University of Virginia, Charlottesville, VA, and a grant (81641160) from National Natural Science Foundation of China, Beijing, China.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, L., Lei, X. & Zuo, Z. Decrease of glial cell-derived neurotrophic factor contributes to anesthesia- and surgery-induced learning and memory dysfunction in neonatal rats. J Mol Med 95, 369–379 (2017). https://doi.org/10.1007/s00109-017-1521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1521-9

Keywords

Navigation