Skip to main content
Log in

Dynamic simulation of short-circuiting transfer in GMAW based on the “mass-spring” model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In accordance to the characteristics of the arcing phase and the short-circuiting phase in the welding process, and in consideration of the variations of arc length, liquid bridge volume, and resistance, a metal transfer dynamic model and a welding circuit model have been developed, respectively. Based on the two models and some assumptions (such as the droplet-displacement equation during short-circuiting phase and the initial parameters of the arcing phase), an improved “mass-spring” model for describing the whole process of short-circuiting transfer (SCT) (includes arcing phase and short-circuiting phase) have been put forward. In addition, the model is proposed to predict the dynamic process with variation of welding parameters continuously, and the calculated results are compared with the experimental. The results demonstrate that the predicted short-circuiting frequency and average equivalent radius of contact droplets (just before short-circuiting) are in broad agreement with the experimental, and the equivalent radius of contact droplet of the two has an approximate uniform discrete distribution zone. Finally, an electrical signal is simulated, and comparative analysis is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Waszink JH, Graat HL (1983) Experimental investigation of the forces acting on a drop of weld metal. Weld J 62(4):108–116

    Google Scholar 

  2. Thomsen JS (2004) Advanced control methods for optimization of arc welding. Department of Control Engineering, Aalborg University

    Google Scholar 

  3. Kim YS, Eagar TW (1993) Analysis of metal transfer in gas metal arc welding. Weld J 72(6):269–278

    Google Scholar 

  4. Choi SK, Yoo CD, Kim YS (1998) Dynamic simulation of metal transfer in GMAW, part 1: globular and spray transfer modes. Weld J 77(1):38–44

    Google Scholar 

  5. Simpson SW, Zhu PY (1995) Formation of molten droplets at a consumable anode in an electric welding arc. J Phys D Appl Phys 28(8):1594–1600. doi:10.1088/0022-3727/28/8/008

    Article  Google Scholar 

  6. Gao ZG, Wu YX, Huang J (2009) Analysis of weld pool dynamic during stationary laser–MIG hybrid welding. Int J Adv Manuf Technol 44(9-10):870–879. doi:10.1007/s00170-008-1896-4

    Article  Google Scholar 

  7. Watkins AD, Smartt HB, Johnson J (1992) A dynamic model of droplet growth and detachment in GMAW. Rec Tren Weld Sci Technol, ASM Int, Materials Park, Ohio, USA, pp 933–937

    Google Scholar 

  8. Jae HC, Jihye L, Choong DY (2001) Dynamic force balance model for metal transfer analysis in arc welding. J Phys D Appl Phys 34(17):2658–2664. doi:10.1088/0022-3727/34/17/313

    Article  Google Scholar 

  9. Wu CS, Chen MA, Li SK (2004) Analysis of excited droplet oscillation and detachment in active control of metal transfer. Comput Mater Sci 31(1-2):147–154. doi:10.1016/j.commatsci.2004.02.002

    Article  Google Scholar 

  10. Chen MA, Wu CS, Li SK (2007) Analysis of active control of metal transfer in modified pulsed GMAW. Sci Technol Welding Joining 12(1):10–14. doi:10.1179/174329306X131848

    Article  Google Scholar 

  11. Ersoy U, Kannatey-Asibu E, Hu SJ (2008) Analytical modeling of metal transfer for GMAW in the globular mode. J Manuf Sci Eng 130(6): 061009 (8 pp.). doi: 10.1115/1.3006317

  12. Kataoka T, Ikeda R, Yasuda K, Hirata Y (2009) Development of low spatter CO2 arc welding process with high frequency pulse current. Weld Int 23(5):353–359. doi:10.1080/09507110802542726

    Article  Google Scholar 

  13. Tipi AD (2010) The study on the drop detachment for automatic pipeline GMAW system: free flight mode. Int J Adv Manuf Technol 50(1-4):137–147. doi:10.1007/s00170-010-2515-8

    Article  Google Scholar 

  14. Choi SK, Yoo CD, Kim YS (1998) Dynamic simulation of metal transfer in GMAW-part 2: short-circuit transer mode. Weld J 77(1):45–51

    Google Scholar 

  15. Choi JH, Lee JY, Yoo CD (2001) Simulation of dynamic behavior in a GMAW system. Weld J 80(10):239–246

    Google Scholar 

  16. Tipi AD (2010) The study on the drop detachment for automatic pipeline GMAW system: short-circuit mode. Int J Adv Manuf Technol 50(1-4):149–161. doi:10.1007/s00170-010-2690-7

    Article  Google Scholar 

  17. Zhu ZM, Wu W, Chen Q (2005) Random nature of droplet size and its origins in short circuit CO2 arc welding. Sci Technol Welding Joining 10(6): 636–642. doi: http://dx.doi.org/10.1179/174329305X48356

  18. Moore KL, Naidu DS, Yender R, Tyler J (1997) Gas metal arc welding control: part I—modeling and analysis. Nonlinear Anal Theory Methods Appl 30(5):3101–3111. doi:10.1016/S0362-546X(97)00372-6

    Article  MATH  Google Scholar 

  19. Szekely J (2012) Fluid flow phenomena in metals processing. Elsevier, London

    Google Scholar 

  20. Tipi AD, Hosseini SK, Pariz N (2014) Improving the dynamic metal transfer model of gas metal arc welding (GMAW) process. Int J Adv Manuf Technol 76(1-4):657–668. doi:10.1007/s00170-014-6307-4

    Article  Google Scholar 

  21. Lancaster J (1986) The physics of welding. Pergamon, Oxford

    Google Scholar 

  22. D'Innocenzo A, Renna L (1996) Dripping faucet. Int J Theor Phys 35(5):941–973. doi:10.1007/BF02302382

    Article  MATH  Google Scholar 

  23. Ushio M, Mao W (1996) Modelling of an arc sensor for DC MIG/MAG welding in open arc mode: study of improvement of sensitivity and reliability of arc sensors in GMA welding (1st report). Weld Int 10(8):622–631. doi:10.1080/09507119609549059

    Article  Google Scholar 

  24. Tsai HL, Hu J (2007) Heat and mass transfer in gas metal arc welding. Part I: the arc. Int J Heat Mass Transf 50(5-6):833–846. doi:10.1016/j.ijheatmasstransfer.2006.08.025

    Article  MATH  Google Scholar 

  25. Tsai HL, Hu J (2007) Heat and mass transfer in gas metal arc welding. Part II: the metal. Int J Heat Mass Transf 50(5-6):808–820. doi:10.1016/j.ijheatmasstransfer.2006.08.026

    Article  Google Scholar 

  26. Hüpf T, Cagran C, Lohöfer G, Pottlacher G (2008) Electrical resistivity of high temperature metallic melts–Hf-3% Zr, Re, Fe, Co, and Ni. Density Determ Liq Met 37(3):239–246

    Google Scholar 

  27. Wang JJ, Lin T, Chen SB (2005) Obtaining weld pool vision information during aluminium alloy TIG welding. Int J Adv Manuf Technol 26(3):219–227. doi:10.1007/s00170-003-1548-7

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lü, X. & Jing, H. Dynamic simulation of short-circuiting transfer in GMAW based on the “mass-spring” model. Int J Adv Manuf Technol 87, 897–907 (2016). https://doi.org/10.1007/s00170-016-8538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8538-z

Keywords

Navigation