Skip to main content
Log in

Computational scheme to determine local vibrations of large systems using elongation method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Vibration analysis is important to understand the structures and characteristics of biomolecules and materials. It remains a challenge to obtain the vibrational frequencies of large systems using conventional ab initio calculations. Hence, we developed a new calculation scheme for local vibrations using the elongation method (ELG–VIB) at the Hartree–Fock level. Unlike the conventional method, the ELG–VIB method divides the entire system into a frozen region and an active region, and only the Hessian matrix elements of the active region are calculated. Test calculations were performed on model systems to demonstrate the accuracy and efficiency of the ELG–VIB method. The frequencies and Hessian matrix elements determined using the ELG–VIB method were compared with the results of conventional computation. All ELG–VIB frequencies of the (H2)15 system were in good agreement with the conventional results. Most of the ELG–VIB frequencies of polyethylene (CH3–(CH2)38–CH3) and polyglycine (C2H4NO–(C2H3NO)16–C2H4NO2) systems were also in good agreement with the conventional results; only a few modes including the vibration of the unit neighboring the frozen region were specific to the ELG–VIB results. The difference in the Hessian matrix elements of the model systems illustrates that the largest discrepancy was in the first unit of the active region (B region), which was directly connected to the frozen region (A region); the end unit (M region) showed the smallest difference. The frequencies of the interactive B region and M region of a larger polyglycine system, C2H4NO–(C2H3NO)28–C2H4NO2, were also calculated. The results indicate that the ELG–VIB method provides frequencies similar to those calculated using the conventional method for large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herrmann C, Reiher M (2007) Top Curr Chem 268:85

    Article  CAS  Google Scholar 

  2. Herzberg G (1945) Molecular spectra and molecular structure II. Infrared and Raman spectra of polyatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  3. Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  4. Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Biochim Biophys Acta 1422:105–185

    Article  CAS  Google Scholar 

  5. Andrushchenko V, Bouř P (2007) J Phys Chem A 111:9714–9723

    Article  CAS  Google Scholar 

  6. Pandyra AA, Yamniuk AP, Andrushchenko V, Wieser H, Vogel H (2005) Biopolymers 79:231–237

    Article  CAS  Google Scholar 

  7. Bouř P, Sopková J, Bednárová L, Maloň P, Keiderling TA (1997) J Comput Chem 18:646–659

    Article  Google Scholar 

  8. Kubelka J, Bouř P (2009) J Chem Theory Comput 5:200–207

    Article  CAS  Google Scholar 

  9. Reiher M, Neugebauer J (2003) J Chem Phys 118:1634–1641

    Article  CAS  Google Scholar 

  10. Luber S, Neugebauer J, Reiher M (2009) J Chem Phys 130:064105

    Article  Google Scholar 

  11. Jacob CR, Reiher M (2009) J Chem Phys 30:084106

    Article  Google Scholar 

  12. Jacob CR, Luber S, Reiher M (2009) J Phys Chem B 113:6558–6573

    Article  CAS  Google Scholar 

  13. Panek PT, Jacob CR (2014) ChemPhysChem 15:3365–3377

    Article  CAS  Google Scholar 

  14. Borowski P, Pasieczna-Patkowska S, Barczak M, Pilorz K (2012) J Phys Chem A 116:7424–7435

    Article  CAS  Google Scholar 

  15. Li H, Jensen JH (2002) Theor Chem Acc 107:211–219

    Article  CAS  Google Scholar 

  16. Besley NA, Metcalf KA (2007) J Chem Phys 126:035101

    Article  Google Scholar 

  17. Jin S, Head JD (1994) Surf Sci 318:204–216

    Article  CAS  Google Scholar 

  18. Head JD (1997) Int J Quantum Chem 65:827–838

    Article  CAS  Google Scholar 

  19. Ghysels A, Neck DV, Speybroeck V, Verstraelen T, Waroquier M (2007) J Chem Phys 126:224102

    Article  CAS  Google Scholar 

  20. Durand P, Trinquier G, Sanejouand YH (1994) Biopolymers 34:759–771

    Article  CAS  Google Scholar 

  21. Tama F, Gadea X, Marques O, Sanejouand YH (2000) Proteins: Struct Funct Genet 41:1–7

    Article  CAS  Google Scholar 

  22. Ghysels A, Speybroeck V, Pauwels E, Catak S, Brooks BR, Neck DV, Waroquier M (2010) J Comput Chem 31:994–1007

    CAS  Google Scholar 

  23. Imamura A, Aoki Y, Maekawa K (1991) J Chem Phys 95:5419–5431

    Article  CAS  Google Scholar 

  24. Aoki Y, Gu FL (2012) Phys Chem Chem Phys 14:7640–7668

    Article  CAS  Google Scholar 

  25. Aoki Y, Imamura A (1992) J Chem Phys 97:8432–8440

    Article  CAS  Google Scholar 

  26. Aoki Y, Suhai S, Imamura A (1994) J Chem Phys 101:10808–10823

    Article  CAS  Google Scholar 

  27. Korchowiec J, Gu FL, Imamura A, Kirtman B, Aoki Y (2005) Int J Quantum Chem 102:785–794

    Article  CAS  Google Scholar 

  28. Korchowiec J, Silva P, Makowski M, Gu FL, Aoki Y (2010) Int J Quantum Chem 110:2130–2139

    Article  CAS  Google Scholar 

  29. Korchowiec J, Gu FL, Aoki Y (2006) J Comput Methods Sci Eng 6:189–200

    CAS  Google Scholar 

  30. Korchowiec J, Lewandowski J, Makowski M, Gu FL, Aoki Y (2009) J Comput Chem 30:2515–2525

    Article  CAS  Google Scholar 

  31. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  32. Pomogaeva A, Kirtman B, Gu FL, Aoki Y (2008) J Chem Phys 128:074109

    Article  Google Scholar 

  33. Pomogaeva A, Springborg M, Kirtman B, Gu FL, Aoki Y (2009) J Chem Phys 130:194106

    Article  Google Scholar 

  34. Ohnishi S, Orimoto Y, Gu FL, Aoki Y (2007) J Chem Phys 127:084702

    Article  Google Scholar 

  35. Chen W, Yu GT, Gu FL, Aoki Y (2010) J Phys Chem C113:8447–8454

    Google Scholar 

  36. Yan LK, Pomogaeva A, Gu FL, Aoki Y (2010) Theor Chem Acc 125:511–520

    Article  CAS  Google Scholar 

  37. Pomogaeva P, Gu FL, Imamura A, Aoki Y (2010) Theor Chem Acc 125:453–460

    Article  CAS  Google Scholar 

  38. Aoki Y, Loboda O, Liu K, Makowski M, Gu FL (2011) Theor Chem Acc 130:595–608

    Article  CAS  Google Scholar 

  39. Liu K, Inerbaev T, Korchowiec J, Gu FL, Aoki Y (2012) Theor Chem Acc 131:1277

    Article  Google Scholar 

  40. Liu K, Yan Y, Gu FL, Aoki Y (2013) Chem Phys Lett 565:143–147

    Article  CAS  Google Scholar 

  41. Xie P, Orimoto Y, Aoki Y (2013) Materials 6:870–885

    Article  CAS  Google Scholar 

  42. Jin L, Liu K, Aoki Y (2015) J Mol Model 21:117

    Article  Google Scholar 

  43. Chaban G, Schmidt MW, Gordon MS (1997) Theor Chem Acc 97:88–95

    Article  CAS  Google Scholar 

  44. Makowski M, Korchowiec J, Gu FL, Aoki Y (2006) J Comput Chem 27:1603–1619

    Article  CAS  Google Scholar 

  45. Orimoto Y, Gu FL, Imamura A, Aoki Y (2007) J Chem Phys 126:215104

    Article  Google Scholar 

  46. Xie P, Liu K, Gu FL, Aoki Y (2011) Int J Quantum Chem 112:230–239

    Article  Google Scholar 

  47. Chen W, Yu GT, Gu FL, Aoki Y (2009) Chem Phys Lett 474:175–179

    Article  CAS  Google Scholar 

  48. Chen W, Yu GT, Gu FL, Aoki Y (2009) J Phys Chem C 113:8447–8454

    Article  CAS  Google Scholar 

  49. Gu FL, Aoki Y, Korchowiec J, Imamura I, Kirtman B (2004) J Chem Phys 121:10385–10391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. L. Jin thanks the Japan Society for the Promotion of Science for a JSPS fellowship. The calculations were mainly performed on the Linux clusters of our laboratory provided by JST-CREST. This work was also supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (No. 25-03331, 23245005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriko Aoki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Yan, Ya. & Aoki, Y. Computational scheme to determine local vibrations of large systems using elongation method. Theor Chem Acc 136, 11 (2017). https://doi.org/10.1007/s00214-016-2030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2030-6

Keywords

Navigation