Skip to main content
Log in

Development of a novel probiotic delivery system based on microencapsulation with protectants

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The establishment of the health-promoting benefits of probiotics is challenged by the antimicrobial bio-barriers throughout the host’s gastrointestinal (GI) tract after oral administration. Although microencapsulation has been frequently utilised to enhance the delivery of probiotics, microcapsules of sub-100 μm were found to be ineffective and therefore questioned as an effective delivery vehicle for viable probiotics despite the sensory advantage. In this study, four probiotics strains were encapsulated in chitosan-coated alginate microcapsules of sub-100 μm. Only a minor protective effect was observed from this original type of microcapsule. In order to enhance the survival of these probiotics, sucrose, a metabolisable sugar, and lecithin vesicles were added to the wall material. Both of the ingredients could be readily encapsulated with the probiotics, and protected them from stresses in the simulated GI fluids. The metabolisable sugar effectively increased the survival of the probiotics in gastric acid, mainly through energizing the membrane-bound F1F0-ATPases. The lecithin vesicles proved to alleviate the bile salt stress, and hence notably reduced the viability loss at the elevated bile salt concentrations. Overall, three out of the total four probiotics in the reinforced sub-100 μm microencapsules could significantly survive through an 8-h sequential treatment of the simulated GI fluids, giving less than 1-log drop in viable count. The most vulnerable strain of bifidobacteria also yielded a viability increase of 3-logs from this protection. In conclusion, the sub-100 μm microcapsules can be a useful vehicle for the delivery of probiotics, as long as suitable protectants are incorporated in the wall matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anal A, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology 18(5):240–251

    Article  CAS  Google Scholar 

  • Anal AK, Bhopatkar D, Tokura S, Tamura H, Stevens WF (2003) Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Drug Development and Industrial Pharmacy 29(6):713–724. doi:10.1081/DDC-120021320

    Article  CAS  Google Scholar 

  • Begley M, Gahan C, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiology Reviews 29(4):625–651

    Article  CAS  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods 56(1):27–35

    Article  CAS  Google Scholar 

  • Chen X, Sun Z, Meng H, Zhang H (2009) The acid tolerance association with expression of H+-ATPase in Lactobacillus casei. International Journal of Dairy Technology 62(2):272–276

    Article  CAS  Google Scholar 

  • Corcoran B, Stanton C, Fitzgerald G, Ross R (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Applied and Environmental Microbiology 71(6):3060

    Article  CAS  Google Scholar 

  • Cotter P, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews 67(3):429

    Article  CAS  Google Scholar 

  • Cotter P, Gahan C, Hill C (2000) Analysis of the role of the Listeria monocytogenes F0F1-ATPase operon in the acid tolerance response. International Journal of Food Microbiology 60(2–3):137–146

    Article  CAS  Google Scholar 

  • Cui J, Goh J, Kim P, Choi S, Lee B (2000) Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. International Journal of Pharmaceutics 210(1–2):51–59

    Article  CAS  Google Scholar 

  • de Vrese M, Marteau PR (2007) Probiotics and prebiotics: effects on diarrhea. Journal of Nutrition 137(3):803S–811

    Google Scholar 

  • Donovan J, Jackson A (1993) Rapid determination by centrifugal ultrafiltration of inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile: influence of Donnan equilibrium effects. The Journal of Lipid Research 34(7):1121

    CAS  Google Scholar 

  • Drouault S, Corthier G, Ehrlich SD, Renault P (1999) Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Applied and Environmental Microbiology 65(11):4881–4886

    CAS  Google Scholar 

  • Gänzle M, Hertel C, van der Vossen J, Hammes W (1999) Effect of bacteriocin-producing lactobacilli on the survival of Escherichia coli and Listeria in a dynamic model of the stomach and the small intestine. International Journal of Food Microbiology 48(1):21–35

    Article  Google Scholar 

  • Giannella RA, Broitman SA, Zamcheck N (1972) Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13(4):251–256. doi:10.1136/gut.13.4.251

    Article  CAS  Google Scholar 

  • Hansen L, Allan-Wojtas P, Jin Y, Paulson A (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology 19(1):35–45

    Article  CAS  Google Scholar 

  • Hatakka K, Mutanen M, Holma R, Saxelin M, Korpela R (2008) Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids. Journal of the American College of Nutrition 27(4):441

    CAS  Google Scholar 

  • Hope M, Bally M, Webb G, Cullis P (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochimica et Biophysica Acta (BBA)-Biomembranes 812 (1):55–65

    Google Scholar 

  • Kekkonen R, Lummela N, Karjalainen H, Latvala S, Tynkkynen S, Jarvenpaa S, Kautiainen H, Julkunen I, Vapaatalo H, Korpela R (2008) Probiotic intervention has strain-specific anti-inflammatory effects in healthy adults. World Journal of Gastroenterology 14(13). doi:10.3748/wjg.14.2029

  • Larisch B, Poncelet D, Champagne C, Neufeld R (1994) Microencapsulation of Lactococcus lactis subsp. cremoris. Journal of Microencapsulation 11(2):189–195

    Article  CAS  Google Scholar 

  • Lee K, Heo T (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Applied and Environmental Microbiology 66(2):869

    Article  CAS  Google Scholar 

  • Leroy F, Falony G, Vuyst L (2008) Latest developments in probiotics. In: Toldrá F (ed) Meat biotechnology. Springer, New York, pp 217–229

    Chapter  Google Scholar 

  • Li X-Y, Jin L-J, McAllister TA, Stanford K, Xu J-Y, Lu Y-N, Zhen Y-H, Sun Y-X, Xu Y-P (2007) Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY). Journal of Agricultural and Food Chemistry 55(8):2911–2917. doi:10.1021/jf062900q

    Article  CAS  Google Scholar 

  • Lorca G, Font de Valdez G (2001) Acid tolerance mediated by membrane ATPases in Lactobacillus acidophilus. Biotechnology Letters 23(10):777–780

    Article  CAS  Google Scholar 

  • Martin CC, Donald MS (1970) The characteristics of mixed micellar solutions with particular reference to bile. The American Journal of Medicine 49(5):590–608

    Article  Google Scholar 

  • Masco L, Crockaert C, Van Hoorde K, Swings J, Huys G (2007) In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolates of Bifidobacterium. Journal of Dairy Science 90(8):3572–3578. doi:10.3168/jds.2006-548

    Article  CAS  Google Scholar 

  • Narain P, DeMaria E, Heuman D (1998) Lecithin protects against plasma membrane disruption by bile salts. Journal of Surgical Research 78(2):131–136

    Article  CAS  Google Scholar 

  • Nichols JW, Ozarowski J (1990) Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography. Biochemistry 29(19):4600–4606. doi:10.1021/bi00471a014

    Article  CAS  Google Scholar 

  • O’Flaherty S, Goh YJ, Klaenhammer TR (2009) Genomics of probiotic bacteria. In: Charalampopoulos D, Rastall RA (eds) Prebiotics and probiotics science and technology. Springer, New York, pp 681–723

    Chapter  Google Scholar 

  • Oelschlaeger T (2010) Mechanisms of probiotic actions—a review. International Journal of Medical Microbiology 300(1):57–62

    Article  CAS  Google Scholar 

  • Ooi L, Liong M (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. International Journal of Molecular Sciences 11(6):23. doi:10.3390/ijms11062499

    Article  Google Scholar 

  • Ouwehand AC, Tölkkö S, Salminen S (2001) The effect of digestive enzymes on the adhesion of probiotic bacteria in vitro. Journal of Food Science 66(6):856–859. doi:10.1111/j.1365-2621.2001.tb15186.x

    Article  CAS  Google Scholar 

  • Sagawa H, Tazuma S, Kajiyama G (1993) Protection against hydrophobic bile salt-induced cell membrane damage by liposomes and hydrophilic bile salts. American Journal of Physiology- Gastrointestinal and Liver Physiology 264(5):835

    Google Scholar 

  • Sánchez B, De Los Reyes-Gavilán CG, Margolles A (2006) The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environmental Microbiology 8(10):1825–1833. doi:10.1111/j.1462-2920.2006.01067.x

    Article  Google Scholar 

  • Shimakawa Y, Matsubara S, Yuki N, Ikeda M, Ishikawa F (2003) Evaluation of Bifidobacterium breve strain Yakult-fermented soymilk as a probiotic food. International Journal of Food Microbiology 81(2):131–136

    Article  CAS  Google Scholar 

  • Silva C, Ribeiro A, Figueiredo M, Ferreira D, Veiga F (2005) Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. The AAPS Journal 7(4):903–913

    Article  Google Scholar 

  • Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflammatory Bowel Diseases 14(11):1585–1596. doi:10.1002/ibd.20525

    Article  Google Scholar 

  • Waddington L, Cyr T, Hefford M, Hansen L, Kalmokoff M (2010) Understanding the acid tolerance response of bifidobacteria. Journal of Applied Microbiology 108(4):1408–1420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Technology for Industry Fellowship (TIF) New Zealand grant DPAC0702 and by the Drapac Trust, New Zealand. We also thank Dr. Sabrina Tian, the team of Seafood Unit—Plant and Food Research, the team of AnQual Lab—the University of Auckland, Ms. Vivien Zhang and Ms. Yu Cao for their kind help and emotional support throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Zhao, Q., Ferguson, L.R. et al. Development of a novel probiotic delivery system based on microencapsulation with protectants. Appl Microbiol Biotechnol 93, 1447–1457 (2012). https://doi.org/10.1007/s00253-011-3609-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3609-4

Keywords

Navigation