Skip to main content
Log in

Dual temperature- and pH-responsive ibuprofen delivery from poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles and their fractal features

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The loading properties of ibuprofen (IBU) were investigated using poly(N-isopropylacrylamide-co-acrylic acid) P(NIPAM-co-AA) copolymer nanoparticles as a carrier. Subsequently, the sensitivity of controlled release performance during changing external conditions and composition of copolymer were evaluated in detail. The results showed that the introduction of AA chains into PNIPAM framework enhanced the loading of IBU and the maximum loading capability of P(NIPAM-co-AA)-3 reached up to 7.9 wt%. The release behaviors of IBU-loaded copolymers exhibited high responsiveness to temperature and pH values. For example, P(NIPAM-co-AA)-10 exhibited a high cumulative release amount of 83.2% at 37 °C/pH 7.4, and a significant decrease in the release amount of 32.2% at 37 °C/pH 2.0. The influence of various amounts of acrylic acid (AA) and salt effect (ionic strength) on the swelling behaviors were demonstrated via dynamic light scattering method. Their microstructures and morphologies were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) techniques, which confirmed the presence of fractal structures with D m (2.65–2.87) or D s (2.0–2.33). These results further suggested that the structural evolution of P(NIPAM-co-AA) copolymer with increasing AA content had occurred from loose networks to dense aggregates with statistical self-similarity. The IBU-release mechanism was proposed, whereas the IBU diffusion contribution from P(NIPAM-co-AA) was thoroughly elucidated using three empirical equations, namely Korsmeyer–Peppas model, modified Korsmeyer–Peppas model and Higuchi model, respectively. The obtained results demonstrated that the release procedure of P(NIPAM-co-AA) was driven by typical non-Fickian diffusion mechanism in the basic medium, while in acid medium a two-stage release mechanism was observed due to their aggregation behaviors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Díez-Peña E, Quijada-Garrido I, Barrales-Rienda JM, Schnell I, Spiess HW (2004) The formation of hydrogen bonds in hydrogels based on N-isopropylacrylamide (NiPAAm) and methacrylic acid (MAA). Macromol Chem Phys 205:438–447

    Article  Google Scholar 

  2. Karg M, Pastoriza-Santos I, Rodriguez-González B (2008) Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels. Langmuir 24:6300–6306

    Article  CAS  Google Scholar 

  3. Ninni L, Ermatchkov V, Hasse H, Maure G (2014) Swelling behavior of chemically cross-linked poly(N-IPAAm-allylglycine) hydrogels: effects of NaCl and pH. Fluid Phase Equilib 361:257–265

    Article  CAS  Google Scholar 

  4. Némethy Á, Solti K, Kiss L, Gyarmat B, Deli MA, Csányi E, Szilágyi A (2013) pH- and temperature-responsive poly(aspartic acid)-l-poly(N-isopropylacrylamide) conetwork hydrogel. Eur Polym J 49:2392–2403

    Article  Google Scholar 

  5. Constantin M, Bucatariu S, Harabagiu V, Popescu I, Ascenzi P, Fundueanu G (2014) Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. Eur J Pharm Sci 62:86–95

    Article  Google Scholar 

  6. Chen SL, Liu MZ, Jin SP, Chen Y (2014) pH-/temperature-sensitive carboxymethyl chitosan/poly(N-isopropylacrylamide-co-methacrylic acid) IPN: preparation, characterization and sustained release of riboflavin. Polym Bull 71:719–734

    Article  CAS  Google Scholar 

  7. Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2013) Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 34:8819–8834

    Article  CAS  Google Scholar 

  8. Prasannan A, Tsai HC, Chen YS, Hsiue GH (2014) A thermally triggered in situ hydrogel from poly(acrylic acid-co-N-isopropylacrylamide) for controlled release of anti-glaucoma drugs. J Mater Chem B 2:1988–1997

    Article  CAS  Google Scholar 

  9. Johnson RP, Jeong Y, John JV, Chung CW, Kang DH, Selvaraj M, Suh H, Kim I (2013) Dual stimuli-responsive poly(N-isopropylacrylamide)-b-poly (l-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Biomacromolecules 14:1434–1443

    Article  CAS  Google Scholar 

  10. Taşdelen B, Kayaman-Apohan N, Güvenc O, Baysal BM (2005) Anticancer drug release from poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Radiat Phys Chem 73:340–345

    Article  Google Scholar 

  11. Xu TW, He BL (1998) Mechanism of sustained drug release in diffusion-controlled polymer matrix-application of percolation theory. Int J Pharm 170:139–149

    Article  Google Scholar 

  12. Craig DQM (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231:131–144

    Article  CAS  Google Scholar 

  13. McGint S, McKee S (2015) Release mechanism and parameter estimation in drug-eluting stent systems: analytical solutions of drug release and tissue transport. Math Med Biol 32:163–186

    Article  Google Scholar 

  14. Díez-Peña E, Frutos P, Frutos G, Quijada-Garrido I, Barrales-Rienda JM (2004) The influence of the copolymer composition on the diltiazem hydrochloride release from a series of pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. AAPS Pharm Sci Tech 5:1–8

    Article  Google Scholar 

  15. Sousa RG, Prior-Cabanillas A, Quijada-Garrido I, Barrales-Rienda JM (2005) Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs. J Control Release 102:595–606

    Article  CAS  Google Scholar 

  16. Bekhradnia S, Zhu KZ, Knudsen KD, Sande SA, Nyström B (2014) Structure, swelling, and drug release of thermoresponsive poly(amidoamine) dendrimer-poly(N-isopropylacrylamide) hydrogels. J Mater Sci 49:6102–6110

    Article  CAS  Google Scholar 

  17. Milašinović N, Krušić MK, Knezevic-Jugovi Z, Filipovi J (2010) Hydrogels of N-isopropylacrylamide copolymers with controlled release of a model protein. Int J Pharm 383:53–61

    Article  Google Scholar 

  18. Bai SY, Zhang H, Sun JH, Han J, Guo YY (2014) Preparation and pH-responsive performance of silane-modified poly(methylacrylic acid). J Appl Poly Sci 131:40403

    Google Scholar 

  19. Guo YY, Sun JH pH-sensitive performance of dextran-poly (acrylic acid) copolymer and its application as a controlled ibuprofen delivery. Int J Polym Mater Polym Biomaterials (In press)

  20. Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819

    Article  CAS  Google Scholar 

  21. Chalal M, Ehrburger-Dolle F, Morfin I, Bley F, Aguilar de Armas MR, Donaire MLL, Roman JS, Bőolgen Nimet, Pişkin E, Ziane O, Casalegno R (2010) SAXS investigation of the effect of temperature on the multiscale structure of a macroporous poly(N-isopropylacrylamide) gel. Macromolecules 43:2009–2017

    Article  CAS  Google Scholar 

  22. Varga N, Benkő M, Sebők D, Dékány I (2014) BSA/polyelectrolyte core–shell nanoparticles for controlled release of encapsulated ibuprofen. Colloids Sur B Biointerfaces 123:616–622

    Article  CAS  Google Scholar 

  23. Su SS, Wang H, Liu XG, Wu Y, Nie GJ (2013) iRGD-coupled responsive fluorescent nanogel for targeted drug delivery. Biomaterials 34:3523–3533

    Article  CAS  Google Scholar 

  24. Zhang H, Bai SY, Sun JH, Han J, Guo YY (2014) pH-responsive ibuprofen delivery in silane-modified poly (methylacrylic acid) coated bimodal mesoporous silicas. Mater Res Bull 53:266–271

    Article  CAS  Google Scholar 

  25. Li ZM, Wang YJ, Shen J, Liu W, Sun XM (2014) The measurement system of nanoparticle size distribution from dynamic light scattering data. Opt Lasers Eng 56:94–98

    Article  Google Scholar 

  26. Höfl S, Zitzler L, Hellweg T, Herminghaus S, Mugele F (2007) Volume phase transition of ‘‘smart’’ microgels in bulk solution and adsorbed at an interface: a combined AFM, dynamic light, and small angle neutron scattering study. Polymer 48:245–254

    Article  Google Scholar 

  27. Bolisetty S, Hoffmann M, Lekkala S, Hellweg Th, Ballauff M, Harnau L (2009) Coupling of rotational motion with shape fluctuations of core-shell microgels having tunable softness. Macromolecules 42:1264–1269

    Article  CAS  Google Scholar 

  28. Hajji P, David L, Gerar JF, Pascault JP, Vigierg I (1999) Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci B Polym Phys 37:3172–3187

    Article  CAS  Google Scholar 

  29. Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    Article  CAS  Google Scholar 

  30. Chakraborty S, Mitra MK, Chaudhuri MG, Das B, Sa S, Dey R (2012) Study of the release mechanism of terminalia chebula extract from nanoporous silica gel. Appl Biochem Biotechnol 168:2043–2056

    Article  CAS  Google Scholar 

  31. Kuang Y, Zhao L, Zhang S, Zhang F, Dong M, Xu S (2010) Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials 3:5220–5235

    Article  CAS  Google Scholar 

  32. Kim H, Fassihi R (1997) Application of binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics. J Pharm Sci 86:323–328

    Article  Google Scholar 

  33. Cost FO, Sous JJS, Pais AACC, Formosinho SJ (2003) Comparison of dissolution profiles of ibuprofen pellets. J Control Release 89:199–212

    Article  Google Scholar 

  34. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157

    Article  CAS  Google Scholar 

  35. Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005) Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Micropor Mesopor Mater 85:75–81

    Article  CAS  Google Scholar 

  36. Viitala R, Jokinen M, Rosenholm JB (2007) Mechanistic studies on release of large and small molecules from biodegradable SiO2. Int J Pharm 336:382–390

    Article  CAS  Google Scholar 

  37. Parfenyuk EV, Dolinina ES (2014) Design of silica carrier for controlled release of molsidomine: effect of preparation methods of silica matrixes and their composites with molsidomine on the drug release kinetics in vitro. Eur J Pharm Biopharm 88:1038–1045

    Article  CAS  Google Scholar 

  38. Lindner WD, Lippold BC (1995) Drug release from hydrocolloid embeddings with high or low susceptibility to hydrodynamic stress. Pharm Res 12:1781–1785

    Article  CAS  Google Scholar 

  39. Curcio M, Spizzirri UG, Iemma F, Puoci F, Cirillo G, Parisi OI, Picci N (2010) Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur J Pharm Biopharm 76:48–55

    Article  CAS  Google Scholar 

  40. Zeeshan A, Gooding EA, Pimenov KV, Wang LL, Asher SA (2009) UV resonance Raman determination of molecular mechanism of poly(N-isopropylacryl -amide) volume phase transition. J Phys Chem B 113:4248–4256

    Article  Google Scholar 

  41. Ende MTA, Peppas NA (1996) Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acry1ic acid-co-2-hydroxyethyl methacrylate) hydrogels. 1. Polymer characterization. J Appl Polym Sci 59:673–685

    Article  Google Scholar 

  42. Mortera R, Fiorilli S, Garrone E, Verné E, Onida B (2010) Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: a quantitative model. Chem Eng J 156:184–192

    Article  CAS  Google Scholar 

  43. Kocbek P, Baumgartner S, Kristl J (2006) Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 312:179–186

    Article  CAS  Google Scholar 

  44. Sitta Danielly LA, Guilherme MR, Silva EP, Valente AJM, Muniz EC, Rubira AF (2014) Drug release mechanisms of chemically cross-linked albumin microparticles: effect of the matrix erosion. Colloids Surf B Biointerfaces 122:404–413

    Article  CAS  Google Scholar 

  45. Dowding PJ, Vincent B, Williams E (2000) Preparation and swelling properties of poly(NIPAM) “minigel” particles prepared by inverse suspension polymerization. J Colloid Interface Sci 221:268–272

    Article  CAS  Google Scholar 

  46. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016

    Article  CAS  Google Scholar 

  47. Kratz K, Hellweg T, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A Physicochem Eng Asp 170:137–149

    Article  CAS  Google Scholar 

  48. Hall RJ, Pinkrah VT, Chowdhry BZ, Snowden MJ (2004) Heteroaggregation studies of mixed cationic co-polymer/anionic homopolymer microgel dispersions. Colloids Surf A Physicochem Eng Asp 233:25–38

    Article  CAS  Google Scholar 

  49. Khan MS, Khan GT, Khan A, Sultana S (2013) Preparation and characterization of novel temperature and pH sensitive (NIPAM-co-MAA) polymer microgels and their volume phase change with various salts. Polymer (Korea) 37:794–801

    Article  CAS  Google Scholar 

  50. Farooqi ZH, Khan HU, Shah SM, Siddi M (2013) Stability of poly (N-isopropyl acrylamide-co-acrylicacid) polymer microgels under various conditions of temperature, pH and salt concentration. Arab J Chem. doi:10.1016/j.arabjc.2013.07.031

    Google Scholar 

  51. Hahn A, Brandes G, Wagener P, Barcikowski S (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154:164–170

    Article  CAS  Google Scholar 

  52. Asrar J, Ding Y, Monica RE, Ness LC (2004) Controlled release of tebuconazole from a polymer matrix microparticle: release kinetics and length of efficacy. J Agric Food Chem 52:4814–4820

    Article  CAS  Google Scholar 

  53. Zhou J, Pishko MV, Lutkenhaus JL (2014) Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery. Langmuir 30:5903–5910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (21276005 and 21576005), and the Beijing Municipal Natural Science Foundation (2152005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Wang, Q., Sun, J. et al. Dual temperature- and pH-responsive ibuprofen delivery from poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles and their fractal features. Polym. Bull. 74, 3619–3638 (2017). https://doi.org/10.1007/s00289-017-1915-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-1915-4

Keywords

Navigation