Skip to main content

Advertisement

Log in

Dynamic crushing behavior of open-cell aluminum foam with negative Poisson’s ratio

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dynamic crushing behavior of the open-cell aluminum foam with negative Poisson’s ratio (NPR) was investigated using the finite-element (FE) method. The plateau stress, the specific energy absorption, and the deformation modes are determined using the FE models. The results indicate that the plateau stress and specific energy absorption (SEA) of NPR open-cell foam under impact loading are less than the conventional foam with the same relative density, and the deformation pattern of NPR open-cell foam material is completely different from the conventional foam material. The NPR open-cell foam material is not suitable for energy absorption under low-velocity impact, but the negative Poisson’s ratio effect on deformation modes becomes smaller with the impact velocity increasing. The length-to-height ratio which is defined for a cell having certain geometric characteristics is a key parameter to design the NPR foams materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Lu, T.X. Yu Energy Absorption of Structures and Materials. (Wood head Publishing Ltd., Cambridge, 2003)

    Book  Google Scholar 

  2. L. Jing, Z.H. Wang, J.G. Ning et al., The dynamic response of sandwich beams with open-cell metal foam cores. Compos. Part B 42(1), 1–10 (2011)

    Article  Google Scholar 

  3. L. Jing, Z.H. Wang, L.M. Zhao, Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading—numerical simulations. Compos. Struct 99, 213–223 (2013)

    Article  Google Scholar 

  4. L.J. Gibson, M.F. Ashby, Cellular Solids. Structure and Properties (Press Syndicate of the University of Cambridge, Cambridge, 1997)

    Book  MATH  Google Scholar 

  5. M.F. Ashby, A.G. Evans, N.A. Fleck et al., Metal Foams: A Design Guide (Butter worth–Heinemann, Oxford, 2000)

    Google Scholar 

  6. H. Yu, Z. Guo, B. Li et al., Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties. Mater. Sci. Eng. A 454–455(16), 542–546 (2007)

    Article  Google Scholar 

  7. V.H. Carneiro, J. Meireles, H. Puga, Auxetic materials—a review. Mater. Sci-Poland 31, 561–571 (2013)

    Article  ADS  Google Scholar 

  8. M. Ruzzene, F. Scarpa, F. Soranna, Wave beaming effects in two-dimensional cellular structures. Smart. Mater. Struct 12, 363 (2003)

    Article  ADS  Google Scholar 

  9. F. Scarpa, Auxetic materials for bioprostheses. IEEE Signal Process. Mag. 25(5), 126–128 (2008)

    Article  Google Scholar 

  10. J.B. Choi, R.S. Lakes, Design of a fastener based on negative Poisson’s ratio foam. Cell Polym. 10, 205–212 (1991)

    Google Scholar 

  11. Y. Sun, N. Pugno, Hierarchical fibers with a negative Poisson’s ratio for tougher composites. Materials 6(2), 699–712 (2013)

    Article  ADS  Google Scholar 

  12. Y.J. Park, J.K. Kim, The effect of negative Poisson’s ratio polyurethane scaffolds for articular cartilage tissue engineering applications. Adv. Mater. Sci. Eng. 2013 (2013). doi:10.1155/2013/85289

  13. Q. Liu, Literature Review: Materials with Negative Poisson’s Ratios and Potential Applications to Aerospace and Defence (DSTO Defence Science and Technology Organisation, Australia, 2006)

    Google Scholar 

  14. Y. Prawoto, Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comp. Mater. Sci. 58, 140–153 (2012)

    Article  Google Scholar 

  15. K.E. Evans, A. Alderson, Auxetic materials: functional materials and structures from lateral thinking. Adv. Mater. 12, 617 (2000)

    Article  Google Scholar 

  16. W. Yang, Z.M. Li, W. Shi et al., Review on auxetic materials. J. Mater. Sci. 39, 3269–3279 (2004)

    Article  ADS  Google Scholar 

  17. S. Xu, J.H. Beynon, D. Ruan et al., Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94(8), 2326–2336 (2012)

    Article  Google Scholar 

  18. X.L. Gao, An exact elasto-plastic solution for a thick-walled spherical shell of elastic linear-hardening material with finite deformations. Int. J. Pres. Ves. Pip. 57(1), 45–56 (1994)

    Article  Google Scholar 

  19. I. Elnasri, S. Pattofatto, H. Zhao et al., Shock enhancement of cellular structures under impact loading: part I Experiments. J. Mech. Phys. Solids 55, 2652–2671 (2007)

    Article  ADS  Google Scholar 

  20. Y. Sun, Q.M. Li, S.A. McDonald et al., Determination of the constitutive relation and critical condition for the shock compression of cellular solids. Mech. Mater. 99, 26–36 (2016)

    Article  Google Scholar 

  21. T.X. Yu, L.L. Hu Mechanical behavior of hexagonal honeycombs under low-velocity impact—theory and simulations. Int. J. Solids Struct. 50, 3152–3165 (2013)

    Article  Google Scholar 

  22. Y. Sun, Q.M. Li, Effect of entrapped gas on the dynamic compressive behaviour of cellular solids. Int. J. Solids Struct. 63, 50–67 (2015)

    Article  Google Scholar 

  23. Z.Q. Li, C.Q. Xi, L. Jing et al., Effect of loading rate on the compressive properties of open-cell metal foams. Mater. Sci. Eng. A 592, 221–229 (2014)

    Article  Google Scholar 

  24. J.H. Fan, J.J. Zhang, Z.H. Wang et al., Dynamic crushing behavior of random and functionally graded metal hollow sphere foams. Mater. Sci. Eng. A 561, 352–361 (2013)

    Article  Google Scholar 

  25. R.K. Mc Farland, Hexagonal cell structures under post-buckling axial load. J. Am. Inst. Aeronaut. Astronaut. 1(6), 1380–1385 (1963)

    Article  Google Scholar 

  26. M. Yang, P. Qiao, Quasi-static crushing behavior of aluminum honeycomb materials. J. Sandwich Struct. Mater. 10(2), 133–160 (2008)

    Article  Google Scholar 

  27. A.S.M. Ashab, D. Ruan, G. Lu et al., Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation. Mater. Des. 74, 138–149 (2015)

    Article  Google Scholar 

  28. Q.M. Li, I. Magkiriadis, J.J. Harrigan, Compressive strain at the onset of densification of cellular solids J. Cell. Plast. 42, 371–392 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.11572214, 11402163), Natural Science Foundation of Shanxi Province (Grant No. 2013011005-2), Shanxi Scholarship Council of China (2013-046), and the Top Young Academic Leaders of Shanxi and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi. The financial contributions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, Z. & Zhao, L. Dynamic crushing behavior of open-cell aluminum foam with negative Poisson’s ratio. Appl. Phys. A 123, 321 (2017). https://doi.org/10.1007/s00339-017-0757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0757-0

Keywords

Navigation