Skip to main content
Log in

Manipulation of spin filtering effect in a hybrid magnetic–electric-barrier nanostructure with a δ-doping

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By means of a hybrid magnetic–electric barrier (MEB) on the top of the semiconductor InAs/AlxIn1−xAs heterostructure, a spin filter can be obtained. In this work, we introduce a δ-doping into this MEB device by molecular beam epitaxy or metal-organic chemical-vapor deposition, to manipulate the spin filtering. With the help of the improved transfer-matrix method and Landauer–Bűttiker theory, transmission coefficient, conductance and spin polarization are calculated for the electrons across this device. Due to spin-field interaction between electron spins and magnetic fields, an obvious spin filtering effect remains in the device even if a δ-doping is included inside. The behavior of spin-polarized electrons is related closely to the δ-doping, due to the strong dependence of the effective potential experienced by the electrons on such a doping. Degree of spin polarization can be manipulated by properly adjusting weight or position of the δ-doping, which gives rise to a structurally controllable spin filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. A. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994)

    Article  ADS  Google Scholar 

  2. A. Nogaret, S.J. Bending, M. Henini, Phys. Rev. Lett. 84, 2231 (2000)

    Article  ADS  Google Scholar 

  3. M.W. Lu, S.Y. Chen, G.L. Zhang, IEEE Trans. Electron. Devices 64, 1823 (2017)

    ADS  Google Scholar 

  4. Y. Liu, L.L. Zhang, M.W. Lu, Y.L. Zhou, F. Li, Solid State Commun. 253, 6 (2017)

    Article  ADS  Google Scholar 

  5. G.X. Liu, L.L. Zhang, G.L. Zhang, L.H. Shen, Appl. Phys. A 123, 241 (2017)

    Article  ADS  Google Scholar 

  6. X.H. Liu, C.S. Liu, B.F. Xiao, Y.G. Lu, Vacuum 148, 173 (2018)

    Article  ADS  Google Scholar 

  7. F. Zhai, Y. Guo, B.L. Gu, Phys. Rev. B 66, 125305 (2002)

    Article  ADS  Google Scholar 

  8. G. Papp, F.M. Peeters, J. Appl. Phys. 100, 043707 (2006)

    Article  ADS  Google Scholar 

  9. M.W. Lu, X.L. Cao, X.H. Huang, Y.Q. Jiang, S.P. Yang, Appl. Surf. Sci. 360, 989 (2016)

    Article  ADS  Google Scholar 

  10. M.W. Lu, S.Y. Chen, X.H. Huang, G.L. Zhang, IEEE J. Electron. Devices 6, 227 (2018)

    Article  Google Scholar 

  11. M.W. Lu, S.Y. Chen, G.L. Zhang, X.H. Huang, J. Phys. Condens. Matter 30, 145302 (2018)

    Article  ADS  Google Scholar 

  12. I. Žutíc, J. Fabiam, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  13. A. Fert, Rev. Mod. Phys. 80, 1517 (2008)

    Article  ADS  Google Scholar 

  14. A. Majumdar, Phys. Rev. B 54, 11911 (1996)

    Article  ADS  Google Scholar 

  15. Y. Guo, B.L. Gu, Z. Zeng, J.Z. Yu, Y. Kawazoe, Phys. Rev. B 62, 2635 (2000)

    Article  ADS  Google Scholar 

  16. G. Papp, F.M. Peeters, Appl. Phys. Lett. 78, 2184 (2001)

    Article  ADS  Google Scholar 

  17. M.W. Lu, L.D. Zhang, X.H. Yan, Phys. Rev. B 66, 224412 (2002)

    Article  ADS  Google Scholar 

  18. F. Zhai, H.Q. Xu, Y. Guo, Phys. Rev. B 70, 085308 (2004)

    Article  ADS  Google Scholar 

  19. H.Z. Xu, P.J. Liu, Y.F. Zhang, Phys. Status Solidi B 240, 169 (2003)

    Article  ADS  Google Scholar 

  20. X. Chen, C.F. Li, Y. Ban, Phys. Rev. B 77, 073307 (2008)

    Article  ADS  Google Scholar 

  21. M.W. Lu, G.L. Zhang, S.Y. Chen, J. Appl. Phys. 112, 014309 (2012)

    Article  ADS  Google Scholar 

  22. M.W. Lu, S.Y. Chen, G.L. Zhang, X.H. Huang, IEEE Trans. Electron. Devices 85, 3045 (2018)

    Article  ADS  Google Scholar 

  23. M. Zhao, J.D. Lu, S.J. Peng, H.Y. Liu, Int. J. Mod. Phys. B 32, 1850186 (2018)

    Article  ADS  Google Scholar 

  24. E.H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, R. Kucharczyk, M. Steslicka, Phys. Rev. B 56, 9603 (1997)

    Article  ADS  Google Scholar 

  25. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, L.Q. Li, Appl. Phys. Lett. 102, 022410 (2013)

    Article  ADS  Google Scholar 

  26. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, L.Q. Li, EPL 101, 47001 (2013)

    Article  ADS  Google Scholar 

  27. M.W. Lu, Z.Y. Wang, X.L. Cao, S. Li, Solid State Commun. 165, 45 (2013)

    Article  ADS  Google Scholar 

  28. S. Li, M.W. Lu, Y.Q. Jiang, S.Y. Chen, Phys. Lett. A 378, 3189 (2014)

    Article  ADS  Google Scholar 

  29. S. Li, M.W. Lu, Y.Q. Jiang, S.Y. Chen, AIP Adv. 4, 097112 (2014)

    Article  ADS  Google Scholar 

  30. L.H. Shen, W.Y. Ma, G.L. Zhang, S.P. Yang, Phys. E 71, 39 (2015)

    Article  Google Scholar 

  31. J.D. Lu, Appl. Surf. Sci. 255, 7348 (2009)

    Article  ADS  Google Scholar 

  32. W.Y. Ma, G.L. Zhang, S.Y. Chen, Y.Q. Jiang, S. Li, Phys. Lett. A 378, 1642 (2014)

    Article  Google Scholar 

  33. Q. Tang, M.W. Lu, X.H. Huang, Y.L. Zhou, J. Nanoelectron. Optoelectron. 13, 132 (2018)

    Article  Google Scholar 

  34. Q. Tang, M.W. Lu, X.H. Huang, Y.L. Zhou, J. Supercond. Nov. Magn. 31, 1383 (2018)

    Article  Google Scholar 

  35. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  36. S.P. Yang, M.W. Lu, X.H. Huang, Q. Tang, Y.L. Zhou, J. Electron. Mater. 46, 1937 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported jointly by the National Natural Science Foundation of China (61464004 and 11864009) and the Guangxi Natural Science Foundation of China (2016GXNSFAA380095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Wang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YL., Lu, MW., Cao, XL. et al. Manipulation of spin filtering effect in a hybrid magnetic–electric-barrier nanostructure with a δ-doping. Appl. Phys. A 124, 705 (2018). https://doi.org/10.1007/s00339-018-2125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2125-0

Navigation