Skip to main content

Advertisement

Log in

Spatiotemporal variation of dissolved carbohydrates and amino acids in Jiaozhou Bay, China

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Surface seawater samples were collected from Jiaozhou Bay, China, during six cruises (March–May 2010, September–November 2010) to study the distribution of dissolved organic matter including dissolved organic carbon (DOC), total dissolved carbohydrates, namely monosaccharides (MCHO) and polysaccharides (PCHO) and total hydrolysable amino acids. These included dissolved free amino acids (DFAA) and combined amino acids (DCAA). The goal was to investigate possible relationships between these dissolved organic compounds and environmental parameters. During spring, the concentrations of MCHO and PCHO were 9.6 (2.8−22.6) and 11.0 (2.9−42.5) μmol C/L, respectively. In autumn, MCHO and PCHO were 9.1 (2.6−27.0) and 10.8 (2.4−25.6) μmol C/L, respectively. The spring concentrations of DFAA and DCAA were 1.7 (1.1−4.1) and 7.6 (1.1−31.0) μmol C/L, respectively, while in autumn, DFAA and DCAA were 2.3 (1.1−8.0) and 3.3 (0.6−7.2) μmol C/L, respectively. Among these compounds, the concentrations of PCHO were the highest, accounting for nearly a quarter of the DOC, followed by MCHO, DCAA and DFAA. The concentrations of the organic compounds exhibited a decreasing trend from the coastal to the central regions of the bay. A negative correlation between concentrations of DOC and salinity in each cruise suggested that riverine inputs around the bay have an important impact on the distribution of DOC in the surface water. A significant positive correlation was found between DOC and total bacteria count in spring and autumn, suggesting bacteria play an important role in the marine carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admiraal W, Riaux-Gobin C, Laane R W P M. 1987. Interactions of ammonium, nitrate, and D-and L-amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar. Ecol. Prog. Ser., 40 (3): 267–273.

    Article  Google Scholar 

  • Amon R M W, Benner R. 2003. Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean. Deep Sea Res. Part I, 50 (1): 151–169.

    Article  Google Scholar 

  • Amon R M W, Fitznar H P, Benner R. 2001. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr., 46 (2): 287–297.

    Article  Google Scholar 

  • Avigad G. 1968. A modified procedure for the colorimetric, ultramicro determination of reducing sugars with the alkaline ferricyanide reagent. Carbohydr. Res., 7: 94–97.

    Article  Google Scholar 

  • Azam F, Fenchel T, Field J G, Gray J S, Meyer-Reil L A, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257–263.

    Article  Google Scholar 

  • Bard A, Goldberg E D, Spencer D W. 1988. Modern chemistry and chemical technology applied to the ocean and its resources introduction. Appl. Geochem., 3 (1): 3–8.

    Article  Google Scholar 

  • Benner R. 2002. Chemical composition and reactivity. In: Hansell D A, Carlson C A eds. Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, New York. p.59–90.

    Chapter  Google Scholar 

  • Bhosle N B, Bhaskar P V, Ramachandran S. 1998. Abundance of dissolved polysaccharides in the oxygen minimum layer of the Northern Indian Ocean. Mar. Chem., 63 (1-2): 171–182.

    Article  Google Scholar 

  • Børsheim K Y, Vadstein O, Myklestad S M, Reinertsen H, Kirkvold S, Olsen Y. 2005. Photosynthetic algal production, accumulation and release of phytoplankton storage carbohydrates and bacterial production in a gradient in daily nutrient supply. J. Plankton Res., 27 (8): 743–755.

    Article  Google Scholar 

  • Carlson C A, Ducklow H W, Michaels A F. 1994. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature, 371 (6496): 405–408.

    Article  Google Scholar 

  • Chen S J, Sun W X, Wang H T. 1982. Numerical modeling of the circulation and the pollutant dispersion in Jiaozhou Bay II. Computation of pollutant dispersion. J. Shandong Coll. Oceanol., 12 (4): 1–12. (in Chinese with English abstract)

    Google Scholar 

  • Chen Y, Yang G P, Wu G W, Gao X C, Xia Q Y. 2013. Concentration and characterization of dissolved organic matter in the surface microlayer and subsurface water of the Bohai Sea, China. Cont. Shelf Res., 52: 97–107.

    Article  Google Scholar 

  • Chester R. 2000. Marine Geochemistry. 2nd ed. Blackwell Science Ltd, Oxford. 506p.

    Google Scholar 

  • Garrasi C, Degens E T, Mopper K. 1979. The free amino acid composition of seawater obtained without desalting and preconcentration. Mar. Chem., 8 (1): 71–85.

    Article  Google Scholar 

  • Görs S, Rentsch D, Schiewer U, Karsten U, Schumann R. 2007. Dißsolved organic matter along the eutrophication gradient of the Darß-Zingst Bodden Chain, Southern Baltic Sea: I. Chemical characterisation and composition. Mar. Chem., 104 (3-4): 125–142.

    Google Scholar 

  • Granum E, Kirkvold S, Myklestad S M. 2002. Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar. Ecol. Prog. Ser., 242: 83–94.

    Article  Google Scholar 

  • Guéguen C, Guo L D, Wang D L, Tanaka N, Hung C C. 2006. Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biogeochemistry, 77 (2): 139–155.

    Article  Google Scholar 

  • Hansell D A, Carlson C A. 1998. Net community production of dissolved organic carbon. Global Biogeochem. Cycles., 12 (3): 443–453.

    Article  Google Scholar 

  • Hedges J I. 1992. Global biogeochemical cycles: progress and problems. Mar. Chem., 39 (1-3): 67–93.

    Article  Google Scholar 

  • Hernes P J, Hedges J I, Peterson M L, Wakeham S G, Lee C. 1996. Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific. Deep Sea Res. Part II, 43 (4-6): 1181–1204.

    Article  Google Scholar 

  • Hubberten U, Lara R J, Kattner G. 1994. Amino acid composition of seawater and dissolved humic substances in the Greenland Sea. Mar. Chem., 45 (1-2): 121–128.

    Article  Google Scholar 

  • Hung C C, Tang D G, Warnken K W, Santschi P H. 2001. Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Mar. Chem., 73 (3-4): 305–318.

    Article  Google Scholar 

  • Ietswaart T, Schneider P J, Prins R A. 1994. Utilization of organic nitrogen sources by two phytoplankton species and a bacterial isolate in a pure and a mixed cultures. Appl. Environ. Microb iol., 60 (5): 1554–1560.

    Google Scholar 

  • Ji M H, Cao W D, Qiu X Q. 1983. Distribution of dissolved carbohydrate in seawater of Jiaozhou Bay. Trans. Oceanol. Limnol., 2): 40–44. (in Chinese with English abstract)

    Google Scholar 

  • Keil R G, Kirchman D L. 1991. Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method. Mar. Chem., 33 (3): 243–259.

    Article  Google Scholar 

  • Keil R G, Kirchman D L. 1993. Dissolved combined amino acids: chemical form and utilization by marine bacteria. Limnol. Oceanogr., 38 (6): 1256–1270.

    Article  Google Scholar 

  • Khodse V B, Bhosle N B, Matondkar S G P. 2010. Distribution of dissolved carbohydrates and uronic acids in a tropical estuary, India. J. Earth Syst. Sci., 119 (4): 519–530.

    Article  Google Scholar 

  • Khodse V B, Bhosle N B. 2011. Bacterial utilization of sizefractionated dissolved organic matter. Aquat. Microb. Ecol., 64 (3): 299–309.

    Article  Google Scholar 

  • Khodse V B, Fernandes L, Bhosle N B, Sardessai S. 2008. Carbohydrates, uronic acids and alkali extractable carbohydrates in contrasting marine and estuarine sediments: distribution, size fractionation and partial chemical characterization. Org. Geochem., 39 (3): 265–283.

    Article  Google Scholar 

  • Linares A, Sundbäck K. 2006. Uptake of dissolved free amino acids (DFAA) by microphytobenthic communities. Aquat. Microb. Ecol., 42 (2): 175–186.

    Article  Google Scholar 

  • Lindroth P, Mopper K. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal. Chem., 51 (11): 1667–1674.

    Article  Google Scholar 

  • Liu D Y, Sun J, Zhang L Y. 2003. Structural characteristics of phytoplankton community during harmful algae bloom in Jiaozhou Bay. Chin. J. Appl. Ecol., 14 (11): 1963–1966. (in Chinese with English abstract)

    Google Scholar 

  • Liu S M, Zhang J, Chen H T, Zhang G S. 2005. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Prog. Oceanogr., 66 (1): 66–85.

    Article  Google Scholar 

  • Meon B, Kirchman D L. 2001. Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Mar. Chem., 75 (3): 185–199.

    Article  Google Scholar 

  • Myklestad S M, Børsheim K Y. 2007. Dynamics of carbohydrates in the Norwegian Sea inferred from monthly profiles collected during 3 years at 66°N, 2°E. Mar. Chem., 107 (4): 475–485.

    Article  Google Scholar 

  • Myklestad S M, Skånøy E, Hestmann S. 1997. A sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Mar. Chem., 56 (3-4): 279–286.

    Article  Google Scholar 

  • Pakulski J D, Benner R. 1994. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr., 39 (4): 930–940.

    Article  Google Scholar 

  • Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford. p.23–58.

    Google Scholar 

  • Pettine M, Patrolecco L, Manganelli M, Capri S, Farrace M G. 1999. Seasonal variations of dissolved organic matter in the northern Adriatic Sea. Mar. Chem., 64 (3): 153–169.

    Article  Google Scholar 

  • Pomeroy L R. 1974. The ocean’s food web, a changing paradigm. BioScience, 24 (9): 499–504.

    Article  Google Scholar 

  • Porter K G, Feig Y S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25 (5): 943–948.

    Article  Google Scholar 

  • Rawat I, Ranjith R R, Mutanda T, Bux F. 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy, 88 (10): 3411–3424.

    Article  Google Scholar 

  • Senior W, Chevolot L. 1991. Studies of dissolved carbohydrates (or carbohydrate-like substances) in an estuarine environment. Mar. Chem., 32 (1): 19–35.

    Article  Google Scholar 

  • Shen Z L. 2001. Historical changes in nutrient structure and its influences on phytoplantkon composition in Jiaozhou Bay. Estuar. Coast. Shelf Sci., 52 (2): 211–224.

    Article  Google Scholar 

  • Shiah F K, Gong G C, Chen T Y, Chen C C. 2000. Temperature dependence of bacterial specific growth rates on the continental shelf of the East China Sea and its potential application in estimating bacterial production. Aquat. Microb. Ecol., 22 (2): 155–162.

    Article  Google Scholar 

  • Skoog A, Benner R. 1997. Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnol. Oceanogr., 42 (8): 1803–1813.

    Article  Google Scholar 

  • Sommerville K, Preston T. 2001. Characterisation of dissolved combined amino acids in marine waters. Rapid Commun. Mass Spectrom., 15 (15): 1287–1290.

    Article  Google Scholar 

  • Søndergaard M, Middelboe M. 1995. A cross-system analysis of labile dissolved organic carbon. Mar. Ecol. Prog. Ser., 118: 283–294.

    Article  Google Scholar 

  • Sugimura Y, Suzuki Y. 1983. Amino acids dissolved in the western North Pacific waters. Pap ers Meteorol. Geophys., 34 (4): 267–289.

    Article  Google Scholar 

  • Sun S, Sun X X, Zhang G T, Tang H B, Liu Q, Li G M. 2011. Long-term changes in major meteorological and hydrological factors in the Jiaozhou Bay. Ocean ol. Limno l. Sinica, 42 (5): 632–638. (in Chinese with English abstract)

    Google Scholar 

  • Wang X R, Cai Y H, Guo L D. 2010. Preferential removal of dissolved carbohydrates during estuarine mixing in the Bay of Saint Louis in the northern Gulf of Mexico. Mar. Chem., 119 (1-4): 130–138.

    Article  Google Scholar 

  • Witter A E, Luther G W. 2002. Spectrophotometric measurement of seawater carbohydrate concentrations in neritic and oceanic waters from the U.S. Middle Atlantic Bight and the Delaware estuary. Mar. Chem., 77 (2-3): 143–156.

    Google Scholar 

  • Wu G W, Yang G P. 2013. Distributions of dissolved carbohydrates in the Yellow Sea and the Northern East China Sea in early winter. J. Coast. Res., 29 (2): 449–459.

    Article  Google Scholar 

  • Yamashita Y, Tanoue E. 2003. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem., 82 (3-4): 145–160.

    Article  Google Scholar 

  • Yang G P, Zhang Y P, Lu X L, Ding H B. 2010. Distributions and seasonal variations of dissolved carbohydrates in the Jiaozhou Bay, China. Estuar. Coast. Shelf Sci., 88 (1): 12–20.

    Article  Google Scholar 

  • Yao Y, Zheng S Q, Shen Z L. 2007. Study on the mechanism of eutrophication in the Jiaozhou Bay. Mar. Sci. Bull., 26 (4): 91–98. (in Chinese with English abstract)

    Google Scholar 

  • Youssef D H, El-Said G F, Shobier A H. 2014. Distribution of total carbohydrates in surface sediments of the Egyptian Mediterranean coast, in relation to some inorganic factors. Arab. J. Chem., 7 (5): 823–832.

    Article  Google Scholar 

  • Zhang G L, Zhang J, Xu J, Zhang F. 2006. Distributions, sources and atmospheric fluxes of nitrous oxide in Jiaozhou Bay. Estuar. Coast. Shelf Sci., 68 (3-4): 557–566.

    Article  Google Scholar 

  • Zhang Y P, Yang G P, Chen Y. 2009. Chemical characterization and composition of dissolved organic matter in Jiaozhou Bay. Chin. J. Oceanol. Limnol., 27 (4): 851–858.

    Article  Google Scholar 

  • Zhang Z B. 2004. Marine Chemistry. China Ocean University Press, Qingdao, China. p.188. (in Chinese)

    Google Scholar 

  • Zhou C Y, Zhang G L, Yang Y P, Chen C M. 1996. The characterization and the distribution of the dissolved free amino acids in Jiulong River Estuary, Xiamen. J. Xiamen Univ. (Nat. Sci.), 35 (3): 402–406. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

We are grateful to the captain and crew of “Seamark 0511” for their help and cooperation during the cruises. We would like to thank the colleagues at our laboratory for their assistance and cooperation in sample collection and Chl- a analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guipeng Yang  (杨桂朋).

Additional information

Supported by the National Natural Science Foundation of China (No. 41030858), the Changjiang Scholars Program, Ministry of Education of China, and the Taishan Scholars Programme of Shandong Province

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Yang, G., Sun, Y. et al. Spatiotemporal variation of dissolved carbohydrates and amino acids in Jiaozhou Bay, China. Chin. J. Ocean. Limnol. 35, 383–399 (2017). https://doi.org/10.1007/s00343-016-5218-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5218-7

Keywords

Navigation