Skip to main content

Advertisement

Log in

INGs are potential drug targets for cancer

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The inhibitor of growth (ING) family consists of ING1, ING2, ING3, ING4 and ING5, which function as the type II tumor suppressors. INGs regulate cell proliferation, senescence, apoptosis, differentiation, angiogenesis, DNA repair, metastasis, and invasion by multiple pathways. In addition, INGs increase cancer cell sensitivity for chemotherapy and radiotherapy, while clinical observations show that INGs are frequently lost in some types of cancers. The aim of the study was to summarize the recent progress regarding INGs regulating tumor progression.

Methods

The literatures of INGs regulating tumor progression were searched and assayed.

Results

The regulating signaling pathways of ING1, ING2, ING3 or ING4 on tumor progression were shown. The mechanisms of INGs on tumor suppression were also assayed.

Conclusions

This review better summarized the signaling mechanism of INGs on tumor suppression, which provides a candidate therapy strategy for cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad M, Menendez C, Fuchtbauer A, Serrano M, Fuchtbauer EM, Palmero I (2007) Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress. J Biol Chem 282:31060–31067

    Article  CAS  PubMed  Google Scholar 

  • Berger PL, Frank SB, Schulz VV, Nollet EA, Edick MJ, Holly B, Chang TT, Hostetter G, Kim S, Miranti CK (2014) Transient induction of ING4 by Myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis. Cancer Res 74:3357–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigot N, Guerillon C, Loisel S, Bertheuil N, Sensebe L, Tarte K, Pedeux R (2015) ING1b negatively regulates HIF1alpha protein levels in adipose-derived stromal cells by a SUMOylation-dependent mechanism. Cell Death Dis 6:e1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkosky SS, Gunduz M, Nagatsuka H, Beder LB, Gunduz E, Ali MA, Rodriguez AP, Cilek MZ, Tominaga S, Yamanaka N, Shimizu K, Nagai N (2009) Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 135:703–713

    Article  CAS  PubMed  Google Scholar 

  • Bose P, Thakur S, Thalappilly S, Ahn BY, Satpathy S, Feng X, Suzuki K, Kim SW, Riabowol K (2013) ING1 induces apoptosis through direct effects at the mitochondria. Cell Death Dis 4:e788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose P, Thakur SS, Brockton NT, Klimowicz AC, Kornaga E, Nakoneshny SC, Riabowol KT, Dort JC (2014) Tumor cell apoptosis mediated by cytoplasmic ING1 is associated with improved survival in oral squamous cell carcinoma patients. Oncotarget 5:3210–3219

    Article  PubMed  PubMed Central  Google Scholar 

  • Bua DJ, Martin GM, Binda O, Gozani O (2013) Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage. Sci Rep 3:2137

    Article  PubMed  PubMed Central  Google Scholar 

  • Byron SA, Min E, Thal TS, Hostetter G, Watanabe AT, Azorsa DO, Little TH, Tapia C, Kim S (2012) Negative regulation of NF-kappaB by the ING4 tumor suppressor in breast cancer. PLoS One 7:e46823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cengiz B, Gunduz E, Gunduz M, Beder LB, Tamamura R, Bagci C, Yamanaka N, Shimizu K, Nagatsuka H (2010) Tumor-specific mutation and downregulation of ING5 detected in oral squamous cell carcinoma. Int J Cancer 127:2088–2094

    Article  CAS  PubMed  Google Scholar 

  • Ceruti JM, Ogara MF, Menendez C, Palmero I, Canepa ET (2013) Inhibitor of growth 1 (ING1) acts at early steps of multiple DNA repair pathways. Mol Cell Biochem 378:117–126

    Article  CAS  PubMed  Google Scholar 

  • Champagne KS, Saksouk N, Pena PV, Johnson K, Ullah M, Yang XJ, Cote J, Kutateladze TG (2008) The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 72:1371–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Wang Y, Garate M, Zhou J, Li G (2010) The tumor suppressor ING3 is degraded by SCF(Skp2)-mediated ubiquitin-proteasome system. Oncogene 29:1498–1508

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Tran UM, Rajarajacholan U, Thalappilly S, Riabowol K (2013) ING1b-inducible microRNA203 inhibits cell proliferation. Br J Cancer 108:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin MY, Ng KC, Li G (2005) The novel tumor suppressor p33ING2 enhances UVB-induced apoptosis in human melanoma cells. Exp Cell Res 304:531–543

    Article  CAS  PubMed  Google Scholar 

  • Coles AH, Liang H, Zhu Z, Marfella CG, Kang J, Imbalzano AN, Jones SN (2007) Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis. Cancer Res 67:2054–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles AH, Marfella CG, Imbalzano AN, Steinman HA, Garlick DS, Gerstein RM, Jones SN (2008) p37Ing1b regulates B-cell proliferation and cooperates with p53 to suppress diffuse large B-cell lymphomagenesis. Cancer Res 68:8705–8714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles AH, Gannon H, Cerny A, Kurt-Jones E, Jones SN (2010) Inhibitor of growth-4 promotes IkappaB promoter activation to suppress NF-kappaB signaling and innate immunity. Proc Natl Acad Sci USA 107:11423–11428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, Mancini C, Lazzaretti M, Mazzera L, Ravanetti L, Bonomini S, Ferrari L et al (2007) The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 110:4464–4475

    Article  CAS  PubMed  Google Scholar 

  • Conner J, Braidwood L (2012) Expression of inhibitor of growth 4 by HSV1716 improves oncolytic potency and enhances efficacy. Cancer Gene Ther 19:499–507

    Article  CAS  PubMed  Google Scholar 

  • Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24:1884–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Luo LB, Tao YM, Wu F, Yang LY (2009) Decreased expression of inhibitor of growth 4 correlated with poor prognosis of hepatocellular carcinoma. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cospons Am Soc Prev Oncol 18:409–416

    Article  CAS  Google Scholar 

  • Feng X, Hara Y, Riabowol K (2002) Different HATS of the ING1 gene family. Trends Cell Biol 12:532–538

    Article  CAS  PubMed  Google Scholar 

  • Garate M, Campos EI, Bush JA, Xiao H, Li G (2007) Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. FASEB J Off Publ Fed Am Soc Exp Biol 21:3705–3716

    CAS  Google Scholar 

  • Garate M, Wong RP, Campos EI, Wang Y, Li G (2008) NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep 9:576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK (2004) The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428:328–332

    Article  CAS  PubMed  Google Scholar 

  • Goeman F, Otto K, Kyrylenko S, Schmidt O, Baniahmad A (2008) ING2 recruits histone methyltransferase activity with methylation site specificity distinct from histone H3 lysines 4 and 9. Biochim Biophys Acta 1783:1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Cabello D, Callejas S, Benguria A, Moreno A, Alonso J, Palmero I (2010) Regulation of the microRNA processor DGCR8 by the tumor suppressor ING1. Cancer Res 70:1866–1874

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Russell M, Suzuki K, Riabowol K (2006) Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression. Mol Cell Biol 26:2947–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez L, Freije JM, Cal S, Lopez-Otin C, Serrano M, Palmero I (2006) A functional link between the tumour suppressors ARF and p33ING1. Oncogene 25:5173–5179

    CAS  PubMed  Google Scholar 

  • Gou WF, Sun HZ, Zhao S, Niu ZF, Mao XY, Takano Y, Zheng HC (2014) Downregulated inhibitor of growth 3 (ING3) expression during colorectal carcinogenesis. Indian J Med Res 139:561–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gou WF, Shen DF, Yang XF, Zhao S, Liu YP, Sun HZ, Su RJ, Luo JS, Zheng HC (2015) ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression. Oncotarget 6:19552–19579

    Article  PubMed  PubMed Central  Google Scholar 

  • Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, Villasenor J, Mehrotra B et al (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114:99–111

    Article  CAS  PubMed  Google Scholar 

  • Gunduz M, Ouchida M, Fukushima K, Ito S, Jitsumori Y, Nakashima T, Nagai N, Nishizaki K, Shimizu K (2002) Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene 21:4462–4470

    Article  CAS  PubMed  Google Scholar 

  • Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, Tsujigiwa H, Yamachika E, Fukushima K, Beder L, Hirohata S, Ninomiya Y et al (2005) Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene 356:109–117

    Article  CAS  PubMed  Google Scholar 

  • Gunduz M, Beder LB, Gunduz E, Nagatsuka H, Fukushima K, Pehlivan D, Cetin E, Yamanaka N, Nishizaki K, Shimizu K, Nagai N (2008) Downregulation of ING3 mRNA expression predicts poor prognosis in head and neck cancer. Cancer Sci 99:531–538

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Fast W (2011) Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. J Biol Chem 286:17069–17078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Meng X, Wang Q, Wang Y, Shang H (2013) The ING4 Binding with p53 and Induced p53 Acetylation were Attenuated by Human Papillomavirus 16 E6. PLoS One 8:e71453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Feng X, Rattner JB, Smith H, Bose P, Suzuki K, Soliman MA, Scott MS, Burke BE, Riabowol K (2008) Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat Cell Biol 10:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K (2005) Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol 22:104–116

    Article  CAS  PubMed  Google Scholar 

  • Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I (1997) A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Res 57:1255–1258

    CAS  PubMed  Google Scholar 

  • Hou Y, Zhang Z, Xu Q, Wang H, Xu Y, Chen K (2014) Inhibitor of growth 4 induces NFkappaB/p65 ubiquitin-dependent degradation. Oncogene 33:1997–2003

    Article  CAS  PubMed  Google Scholar 

  • Huang JY, Cui SY, Chen YT, Song HZ, Huang GC, Feng B, Sun M, De W, Wang R, Chen LB (2013) MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression. PLoS One 8:e72615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, Simon MD, Kutateladze TG, Gozani O (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka M, Sarmento OF, Sekiya T, Scrable H, Allis CD, Smith MM (2008) Hbo1 Links p53-dependent stress signaling to DNA replication licensing. Mol Cell Biol 28:140–153

    Article  CAS  PubMed  Google Scholar 

  • Kameyama K, Huang CL, Liu D, Masuya D, Nakashima T, Sumitomo S, Takami Y, Kinoshita M, Yokomise H (2003) Reduced ING1b gene expression plays an important role in carcinogenesis of non-small cell lung cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res 9:4926–4934

    CAS  Google Scholar 

  • Kichina JV, Zeremski M, Aris L, Gurova KV, Walker E, Franks R, Nikitin AY, Kiyokawa H, Gudkov AV (2006) Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas. Oncogene 25:857–866

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chin K, Gray JW, Bishop JM (2004) A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci USA 101:16251–16256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Welm AL, Bishop JM (2010) A dominant mutant allele of the ING4 tumor suppressor found in human cancer cells exacerbates MYC-initiated mouse mammary tumorigenesis. Cancer Res 70:5155–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klironomos G, Bravou V, Papachristou DJ, Gatzounis G, Varakis J, Parassi E, Repanti M, Papadaki H (2010) Loss of inhibitor of growth (ING-4) is implicated in the pathogenesis and progression of human astrocytomas. Brain Pathol 20:490–497

    Article  PubMed  Google Scholar 

  • Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC (2008) Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 68:3193–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumamoto K, Fujita K, Kurotani R, Saito M, Unoki M, Hagiwara N, Shiga H, Bowman ED, Yanaihara N, Okamura S, Nagashima M, Miyamoto K et al (2009) ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. Int J Cancer J Int Cancer 125:1306–1315

    Article  CAS  Google Scholar 

  • Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol Cell Biol 22:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrieu D, Ythier D, Brambilla C, Pedeux R (2010) ING2 controls the G1 to S-phase transition by regulating p21 expression. Cell Cycle 9:3984–3990

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li G (2010) Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Res 70:10445–10453

    Article  CAS  PubMed  Google Scholar 

  • Li X, Nishida T, Noguchi A, Zheng Y, Takahashi H, Yang X, Masuda S, Takano Y (2010) Decreased nuclear expression and increased cytoplasmic expression of ING5 may be linked to tumorigenesis and progression in human head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 136:1573–1583

    Article  CAS  PubMed  Google Scholar 

  • Li XH, Noguchi A, Nishida T, Takahashi H, Zheng Y, Yang XH, Masuda S, Kikuchi K, Takano Y (2011a) Cytoplasmic expression of p33ING1b is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma. Histol Histopathol 26:597–607

    CAS  PubMed  Google Scholar 

  • Li N, Li Q, Cao X, Zhao G, Xue L, Tong T (2011b) The tumor suppressor p33ING1b upregulates p16INK4a expression and induces cellular senescence. FEBS Lett 585:3106–3112

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhao G, Chen T, Xue L, Ma L, Niu J, Tong T (2012) Nucleolar protein CSIG is required for p33ING1 function in UV-induced apoptosis. Cell Death Dis 3:e283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Fan T, Liu H, Chen J, Qin C, Ren X (2013) Tumor suppressor ING4 overexpression contributes to proliferation and invasion inhibition in gastric carcinoma by suppressing the NF-kappaB signaling pathway. Mol Biol Rep 40:5723–5732

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Deng H, Lv L, Zhang C, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Yan J, Zhang H et al (2015) The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget 6:10195–10206

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling C, Xie Y, Zhao D, Zhu Y, Xiang J, Yang J (2012) Enhanced radiosensitivity of non-small-cell lung cancer (NSCLC) by adenovirus-mediated ING4 gene therapy. Cancer Gene Ther 19:697–706

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yu L, Wang Y, Zhang Y, Wang Y, Zhang G (2012) Expression of tumor suppressor gene ING4 in ovarian carcinoma is correlated with microvessel density. J Cancer Res Clin Oncol 138:647–655

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Wang J, Wang J, Wang R, Liu Z, Yu Y, Lu H (2013) ING5 is a Tip60 cofactor that acetylates p53 in response to DNA damage. Cancer Res 73:3749–3760

    Article  CAS  PubMed  Google Scholar 

  • Lou C, Jiang S, Guo X, Dong XS (2012) ING4 is negatively correlated with microvessel density in colon cancer. Tumour Biol J Int Soc Oncodev Biol Med 33:2357–2364

    Article  CAS  Google Scholar 

  • Lu M, Chen F, Wang Q, Wang K, Pan Q, Zhang X (2012) Downregulation of inhibitor of growth 3 is correlated with tumorigenesis and progression of hepatocellular carcinoma. Oncol Lett 4:47–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Pan C, Zhang L, Ding C, Chen F, Wang Q, Wang K, Zhang X (2013) ING4 inhibits the translation of proto-oncogene MYC by interacting with AUF1. FEBS Lett 587:1597–1604

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Shah S, Riabowol K, Mains PE (2009) The Caenorhabditis elegans ing-3 gene regulates ionizing radiation-induced germ-cell apoptosis in a p53-associated pathway. Genetics 181:473–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Y, Purbey BK, Huang Y, Li S, Radha G, Hao Z (2012) Adenovirus-mediated expression of p33(ING1b) induces apoptosis and inhibits proliferation in gastric adenocarcinoma cells in vitro. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc 15:355–362

    CAS  Google Scholar 

  • Mao ZL, He SB, Sheng WH, Dong XQ, Yang JC (2013) Adenovirus-mediated ING4 expression reduces multidrug resistance of human gastric carcinoma cells in vitro and in vivo. Oncol Rep 30:2187–2194

    CAS  PubMed  Google Scholar 

  • Moreno A, Soleto I, Garcia-Sanz P, Moreno-Bueno G, Palmero I (2014) ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth. Oncogene 33:1945–1953

    Article  CAS  PubMed  Google Scholar 

  • Nabbi A, Almami A, Thakur S, Suzuki K, Boland D, Bismar TA, Riabowol K (2015) ING3 protein expression profiling in normal human tissues suggest its role in cellular growth and self-renewal. Eur J Cell Biol 94:214–222

    Article  CAS  PubMed  Google Scholar 

  • Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R, Wang XW, Yokota J, Riabowol K, Harris CC (2001) DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci USA 98:9671–9676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagashima M, Shiseki M, Pedeux RM, Okamura S, Kitahama-Shiseki M, Miura K, Yokota J, Harris CC (2003) A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene 22:343–350

    Article  CAS  PubMed  Google Scholar 

  • Nanding A, Tang L, Cai L, Chen H, Geng J, Liu X, Ning X, Li X, Zhang Q (2014) Low ING4 protein expression detected by paraffin-section immunohistochemistry is associated with poor prognosis in untreated patients with gastrointestinal stromal tumors. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc 17:87–96

    CAS  Google Scholar 

  • Nie J, Liu L, Wu M, Xing G, He S, Yin Y, Tian C, He F, Zhang L (2010) HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett 584:3005–3012

    Article  CAS  PubMed  Google Scholar 

  • Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP, Harrison K, Nabors LB, Benveniste EN (2008) The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol 28:6632–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozer A, Bruick RK (2005) Regulation of HIF by prolyl hydroxylases: recruitment of the candidate tumor suppressor protein ING4. Cell Cycle 4:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Palacios A, Munoz IG, Pantoja-Uceda D, Marcaida MJ, Torres D, Martin-Garcia JM, Luque I, Montoya G, Blanco FJ (2008) Molecular basis of histone H3K4me3 recognition by ING4. J Biol Chem 283:15956–15964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan YQ, Zhang X, Xu DP, Bao WG, Lin AF, Xu HH, Yan WH (2014) Decreased expression of ING2 gene and its clinicopathological significance in Chinese NSCLC patients. Neoplasma 61:468–475

    Article  CAS  PubMed  Google Scholar 

  • Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H, Kumamoto K, Wincovitch S, Garfield SH, McMenamin M, Nagashima M, Grossman SR et al (2005) ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol 25:6639–6648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena PV, Hom RA, Hung T, Lin H, Kuo AJ, Wong RP, Subach OM, Champagne KS, Zhao R, Verkhusha VV, Li G, Gozani O et al (2008) Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 380:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L, Zhang Y (2014) Truncation of inhibitor of growth family protein 5 effectively induces senescence, but not apoptosis in human tongue squamous cell carcinoma cell line. Tumour Biol J Int Soc Oncodev Biol Med 35:3139–3144

    Article  CAS  Google Scholar 

  • Rajarajacholan UK, Thalappilly S, Riabowol K (2013) The ING1a tumor suppressor regulates endocytosis to induce cellular senescence via the Rb-E2F pathway. PLoS Biol 11:e1001502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotte A, Li G, Bhandaru M (2014) Tumor suppressor Ing1b facilitates DNA repair and prevents oxidative stress induced cell death. Apoptosis Int J Program Cell Death 19:518–526

    Article  CAS  Google Scholar 

  • Russell M, Berardi P, Gong W, Riabowol K (2006) Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis. Exp Cell Res 312:951–961

    Article  CAS  PubMed  Google Scholar 

  • Russell MW, Soliman MA, Schriemer D, Riabowol K (2008) ING1 protein targeting to the nucleus by karyopherins is necessary for activation of p21. Biochem Biophys Res Commun 374:490–495

    Article  CAS  PubMed  Google Scholar 

  • Saha A, Bamidele A, Murakami M, Robertson ES (2011) EBNA3C attenuates the function of p53 through interaction with inhibitor of growth family proteins 4 and 5. J Virol 85:2079–2088

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Kumamoto K, Robles AI, Horikawa I, Furusato B, Okamura S, Goto A, Yamashita T, Nagashima M, Lee TL, Baxendale VJ, Rennert OM et al (2010) Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PLoS One 5:e15541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarker KP, Kataoka H, Chan A, Netherton SJ, Pot I, Huynh MA, Feng X, Bonni A, Riabowol K, Bonni S (2008) ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. J Biol Chem 283:13269–13279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer A, Karaulanov E, Stapf U, Doderlein G, Niehrs C (2013) Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3. Genes Dev 27:261–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah S, Smith H, Feng X, Rancourt DE, Riabowol K (2009) ING function in apoptosis in diverse model systems. Biochem Cell Biol 87:117–125

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, Lacoste N, Cayrou C et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada H, Liu TL, Ochiai T, Shimizu T, Haupt Y, Hamada H, Abe T, Oka M, Takiguchi M, Hiwasa T (2002) Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33(ING1) in T.Tn human esophageal carcinoma cells. Oncogene 21:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC (2003) p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 63:2373–2378

    CAS  PubMed  Google Scholar 

  • Smith KT, Martin-Brown SA, Florens L, Washburn MP, Workman JL (2010) Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chem Biol 17:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Imai H, Minami N (2013) ING3 is essential for asymmetric cell division during mouse oocyte maturation. PLoS One 8:e74749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallen G, Farhangi S, Tamannai M, Holtkamp N, Mangoldt D, Shah S, Suzuki K, Truss M, Henze G, Riabowol K, von Deimling A (2009) The inhibitor of growth 1 (ING1) proteins suppress angiogenesis and differentially regulate angiopoietin expression in glioblastoma cells. Oncol Res 18:95–105

    Article  CAS  PubMed  Google Scholar 

  • Tamannai M, Farhangi S, Truss M, Sinn B, Wurm R, Bose P, Henze G, Riabowol K, von Deimling A, Tallen G (2010) The inhibitor of growth 1 (ING1) is involved in trichostatin A-induced apoptosis and caspase 3 signaling in p53-deficient glioblastoma cells. Oncol Res 18:469–480

    Article  PubMed  CAS  Google Scholar 

  • Thakur S, Feng X, Qiao Shi Z, Ganapathy A, Kumar Mishra M, Atadja P, Morris D, Riabowol K (2012) ING1 and 5-azacytidine act synergistically to block breast cancer cell growth. PLoS One 7:e43671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur S, Singla AK, Chen J, Tran U, Yang Y, Salazar C, Magliocco A, Klimowicz A, Jirik F, Riabowol K (2014) Reduced ING1 levels in breast cancer promotes metastasis. Oncotarget 5:4244–4256

    Article  PubMed  PubMed Central  Google Scholar 

  • Thalappilly S, Feng X, Pastyryeva S, Suzuki K, Muruve D, Larocque D, Richard S, Truss M, von Deimling A, Riabowol K, Tallen G (2011) The p53 tumor suppressor is stabilized by inhibitor of growth 1 (ING1) by blocking polyubiquitination. PLoS One 6:e21065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang J, Li G (2006a) Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis. FEBS Lett 580:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chin MY, Li G (2006b) The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res 66:1906–1911

    Article  CAS  PubMed  Google Scholar 

  • Wang QS, Li M, Zhang LY, Jin Y, Tong DD, Yu Y, Bai J, Huang Q, Liu FL, Liu A, Lee KY, Fu SB (2010) Down-regulation of ING4 is associated with initiation and progression of lung cancer. Histopathology 57:271–281

    Article  PubMed  Google Scholar 

  • Wang Y, Yang J, Sheng W, Xie Y, Liu J (2015) Adenovirus-mediated ING4/PTEN double tumor suppressor gene co-transfer modified by RGD enhances antitumor activity in human nasopharyngeal carcinoma cells. Int J Oncol 46:1295–1303

    PubMed  Google Scholar 

  • Ythier D, Brambilla E, Binet R, Nissou D, Vesin A, de Fraipont F, Moro-Sibilot D, Lantuejoul S, Brambilla C, Gazzeri S, Pedeux R (2010a) Expression of candidate tumor suppressor gene ING2 is lost in non-small cell lung carcinoma. Lung Cancer 69:180–186

    Article  PubMed  Google Scholar 

  • Ythier D, Larrieu D, Binet R, Binda O, Brambilla C, Gazzeri S, Pedeux R (2010b) Sumoylation of ING2 regulates the transcription mediated by Sin3A. Oncogene 29:5946–5956

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Thakur S, Leong-Quong RY, Suzuki K, Pang A, Bjorge JD, Riabowol K, Fujita DJ (2013) Src regulates the activity of the ING1 tumor suppressor. PLoS One 8:e60943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang KS, Wang ZQ, Xu LS, Wang QW, Chen F, Wei DZ, Han ZG (2005) Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochem Biophys Res Commun 331:1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Zhang HK, Pan K, Wang H, Weng DS, Song HF, Zhou J, Huang W, Li JJ, Chen MS, Xia JC (2008) Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma. Cancer Lett 261:183–192

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhu W, Zhang J, Huo S, Zhou L, Gu Z, Zhang M (2010) MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem Biophys Res Commun 395:275–280

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Baumer N, Rode M, Ji P, Zhang T, Berdel WE, Muller-Tidow C (2011) The inhibitor of growth protein 5 (ING5) depends on INCA1 as a co-factor for its antiproliferative effects. PLoS One 6:e21505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhang X, Meng J, Zhao Y, Liu X, Liu Y, Wang Y, Li Y, Sun Y, Wang Z, Mei Q, Zhang T (2015) ING5 inhibits cancer aggressiveness via preventing EMT and is a potential prognostic biomarker for lung cancer. Oncotarget 6:16239–16252

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Li Z, Sheng W, Miao J, Yang J (2013) Radiosensitivity by ING4-IL-24 bicistronic adenovirus-mediated gene cotransfer on human breast cancer cells. Cancer Gene Ther 20:38–45

    Article  CAS  PubMed  Google Scholar 

  • Zheng HC, Xia P, Xu XY, Takahashi H, Takano Y (2011) The nuclear to cytoplasmic shift of ING5 protein during colorectal carcinogenesis with their distinct links to pathologic behaviors of carcinomas. Hum Pathol 42:424–433

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ, Li FB, Zhou JM, Liu ZC, Zhu XF, Liao WM (2005) The tumor suppressor p33ING1b enhances taxol-induced apoptosis by p53-dependent pathway in human osteosarcoma U2OS cells. Cancer Biol Ther 4:39–47

    Article  PubMed  Google Scholar 

  • Zhu JJ, Li FB, Zhu XF, Liao WM (2006) The p33ING1b tumor suppressor cooperates with p53 to induce apoptosis in response to etoposide in human osteosarcoma cells. Life Sci 78:1469–1477

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Luo Z, Li Y, Ni C, Li H, Zhu M (2009) Human inhibitor of growth 1 inhibits hepatoma cell growth and influences p53 stability in a variant-dependent manner. Hepatology 49:504–512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Jiangsu Province (BK20131251) and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juanjuan Shi or Yongzhong Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This research is not involving human participants and/or animals.

Additional information

Runyun Zhang and Jianhua Jin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Jin, J., Shi, J. et al. INGs are potential drug targets for cancer. J Cancer Res Clin Oncol 143, 189–197 (2017). https://doi.org/10.1007/s00432-016-2219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2219-z

Keywords

Navigation