Skip to main content
Log in

Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We studied the underlying causes of multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis) by identifying differentially expressed genes (DEGs) related to pollen sterility between fertile and sterile flower buds. In this work, we verified the stages of sterility microscopically and then performed transcriptome analysis of mRNA isolated from fertile and sterile buds using Illumina HiSeq 2000 platform sequencing. Approximately 80% of ~229 million high-quality paired-end reads were uniquely mapped to the reference genome. In sterile buds, 699 genes were significantly up-regulated and 4096 genes were down-regulated. Among the DEGs, 28 pollen cell wall-related genes, 54 transcription factor genes, 45 phytohormone-related genes, 20 anther and pollen-related genes, 212 specifically expressed transcripts, and 417 DEGs located on linkage group A07 were identified. Six transcription factor genes BrAMS, BrMS1, BrbHLH089, BrbHLH091, BrAtMYB103, and BrANAC025 were identified as putative sterility-related genes. The weak auxin signal that is regulated by BrABP1 may be one of the key factors causing pollen sterility observed here. Moreover, several significantly enriched GO terms such as “cell wall organization or biogenesis” (GO:0071554), “intrinsic to membrane” (GO:0031224), “integral to membrane” (GO:0016021), “hydrolase activity, acting on ester bonds” (GO:0016788), and one significantly enriched pathway “starch and sucrose metabolism” (ath00500) were identified in this work. qRT-PCR, PCR, and in situ hybridization experiments validated our RNA-seq transcriptome analysis as accurate and reliable. This study will lay the foundation for elucidating the molecular mechanism(s) that underly sterility and provide valuable information for studying multiple-allele-inherited male sterility in the Chinese cabbage line ‘AB01’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell 17:3337–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An H, Yang ZH, Yi B, Wen J, Shen JX, Tu JX, Ma CZ, Fu TD (2014) Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genom 15:258

    Article  Google Scholar 

  • Anders S (2010) HTSeq: analysing high-throughput sequencing data with Python. http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level-the DESeq package. European Molecular Biology Laboratory (EMBL), Heidelberg

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate-a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  • Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067

    CAS  PubMed  Google Scholar 

  • Bino RJ (1985) Histological aspects of microsporogenesis in fertile, cytoplasmic male sterile and restored fertile Petunia hybrida. Theor Appl Genet 69:423–428

    Article  CAS  PubMed  Google Scholar 

  • Brocard-Gifford I, Lynch TJ, Garcia ME, Malhotra B, Finkelstein RR (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16:406–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  CAS  PubMed  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CB, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF (2010) Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol 10:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clément C, Audran J (1999) Anther carbohydrates during in vivo and in vitro pollen development. Anther and pollen. Springer, Berlin, pp 69–90

    Google Scholar 

  • Clement C, Burrus M, Audran JC (1996) Floral organ growth and carbohydrate content during pollen development in Lilium. Am J Bot 83:459–469

    Article  CAS  Google Scholar 

  • Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong XS, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao ZY, Park YD, Ma H, Hur Y (2013) Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br 300 K oligomeric chip. PLoS One 8:e72178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Wei YT, Zhang SN (1995) Inheritance of and utilization model for genic male sterility in Chinese cabbage (Brassica pekinensis Rupr.). Acta Hortic 402:133–140

    Google Scholar 

  • Feng H, Wei YT, Ji SJ, Jin G, Jin JS, Dong WJ (1996) Multiple allele model for genic male sterility in Chinese cabbage. Acta Hortic 467:133–142

    Google Scholar 

  • Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Xu W, Wang YG (2007) Directive transfer of the genetic male sterile line of milk Chinese cabbage AI023. Acta Hortic Sin 34:659–664

    CAS  Google Scholar 

  • Feng H, Wei P, Piao ZY, Liu ZY, Li CY, Wang YG, Ji RQ, Ji SJ, Zou T, Choi SR, Lim YP (2009) SSR and SCAR mapping of a multiple-allele male-sterile gene in Chinese cabbage (Brassica rapa L.). Theor Appl Genet 119:333–339

    Article  CAS  PubMed  Google Scholar 

  • Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant cell 5:1217–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall M, Libbenga KL (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amsterdam, pp 423–459

    Chapter  Google Scholar 

  • Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Cao JS, Zhang AH, Ye YQ, Zhang YC, Liu TT (2009a) The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. J Exp Bot 60:301–313

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Ye YQ, Zhang YC, Zhang AH, Liu TTT, Cao JS (2009b) BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation. Ann Bot Lond 104:1339–1351

    Article  CAS  Google Scholar 

  • Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19:3549–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhang Z, Cao J (2013) Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol 15:249–263

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) Ctr1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein-kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Leblanc-Fournier N, Coutand C, Crouzet J, Brunel N, Lenne C, Moulia B, Julien JL (2008) Jr-ZFP2, encoding a Cys2/His2-type transcription factor, is involved in the early stages of the mechano-perception pathway and specifically expressed in mechanically stimulated tissues in woody plants. Plant Cell Environ 31:715–726

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  CAS  PubMed  Google Scholar 

  • Liu XD, Huang J, Parameswaran S, Ito T, Seubert B, Auer M, Rymaszewski A, Jia GX, Owen HA, Zhao DZ (2009) The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. Plant Physiol 151:1401–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZY, Feng H, Li CY, Wei P, Wang LL (2010) SCAR markers linked to Ms, a genetic male sterile gene in Chinese cabbage. Acta Hortic Sin 37:757–762

    CAS  Google Scholar 

  • Liu ZY, Li CY, Ye XL, Wang XX, Feng H (2011) Cloning and characterization of a pectin methylesterase gene BrPME1 in Chinese cabbage. Sci Agric Sin 44:325–334

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu XD, Chen DJ, Shu DF, Zhang Z, Wang WX, Klukas C, Chen LL, Fan YL, Chen M, Zhang CY (2013) The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol 162:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  CAS  PubMed  Google Scholar 

  • Mamun EA, Alfred S, Cantrill LC, Overall RL, Sutton BG (2006) Effects of chilling on male gametophyte development in rice. Cell Biol Int 30:583–591

    Article  CAS  PubMed  Google Scholar 

  • Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16(Suppl):S142–S153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics 271:121–129

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Kay P, Wilson S, Swain SM (2009) Arabidopsis dehiscence zone polygalactturonase 1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21:216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen HA, Makaroff CA (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L) Heynh ecotype Wassilewskija (Brassicaceae). Protoplasma 185:7–21

    Article  Google Scholar 

  • Pacini E (1996) Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod 9:362–366

    Article  CAS  Google Scholar 

  • Plackett ARG, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends Plant Sci 16:568–578

    Article  CAS  PubMed  Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, Mclntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Sawhney VK, Shukla A (1994) Male-sterility in flowering plants: are plant-growth substances involved. Am J Bot 81:1640–1647

    Article  Google Scholar 

  • Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:11664–11669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Tan HX, Yu XH, Liu YY, Liang WQ, Ranathunge K, Franke RB, Schreiber L, Wang YJ, Kai GY, Shanklin J, Ma H, Zhang DB (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23:2225–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Wan ZJ, Xu YJ, Li XH, Zou RC (2012) Characterization of the chinese cabbage hau cytoplasmic male-sterile line and sequence analysis of the fertility-related gene. Acta Hortic Sin 39:469–476

    CAS  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  CAS  PubMed  Google Scholar 

  • Steiner-Lange S, Unte US, Eckstein L, Yang CY, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519–528

    Article  CAS  PubMed  Google Scholar 

  • Takada K, Ishimaru K, Kamada H, Ezura H (2006) Anther-specific expression of mutated melon ethylene receptor gene Cm-ERS1/H70A affected tapetum degeneration and pollen grain production in transgenic tobacco plants. Plant Cell Rep 25:936–941

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS One 7:e36234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian GW, Chen MH, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91

    Article  CAS  PubMed  Google Scholar 

  • Tong CB, Wang XW, Yu JY, Wu J, Li WS, Huang JY, Dong CH, Hua W, Liu SY (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom 14:689

    Article  CAS  Google Scholar 

  • Torti S, Fornara F, Vincent C, Andrés F, Nordström K, Göbel U, Knoll D, Schoof H, Coupland G (2012) Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell 24:444–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandermeer QP (1987) Chromosomal monogenic dominant male-sterility in Chinese-cabbage (Brassica-Rapa subsp Pekinensis (Lour) Hanelt). Euphytica 36:927–931

    Article  Google Scholar 

  • Wang YG, Feng H, Lin GR, Xu SF, Yang KY, Zhang NJ (2005) The transfer of genetic male sterile lines in Brassica campestris L. ssp. chinensis Makino. Acta Hortic Sin 32:628–631

    Google Scholar 

  • Wang LL, Wei P, Liu ZY, Li CY, Wang YG, Ji RQ, Feng H (2010) SSR mapping of the Ms f, a multiple-allele male-fertility restorer gene in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Acta Hortic Sin 37:923–930

    CAS  Google Scholar 

  • Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    Article  CAS  PubMed  Google Scholar 

  • Wu YZ, Qiu X, Du S, Erickson L (1996) PO149, a new member of pollen pectate lyase-like gene family from alfalfa. Plant Mol Biol 32:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ding ZW, Vizcay-Barrena G, Shi JX, Liang WQ, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang DB (2014) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26:1544–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan XH, Dong CH, Yu JY, Liu WH, Jiang CH, Liu J, Hu Q, Fang XP, Wei WH (2013) Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genom 14:26

    Article  CAS  Google Scholar 

  • Yang SL, Xie LF, Mao HZ, Push CS, Yang WC, Jiang LX, Sundaresan V, Ye D (2003) TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CY, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52:528–538

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Huang L, Liu TT, Yu XL, Cao JS (2008) Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp chinensis Makino). Plant Cell Rep 27:1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, Wu XX, Weeda S, Li L, Ren SX, Reiter RJ, Guo YD (2014) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    Article  CAS  PubMed  Google Scholar 

  • Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Gene Dev 16:2021–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao SR, Fung-Leung WP, Bittner A, Ngo K, Liu XJ (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou SR, Wang Y, Li WC, Zhao ZG, Ren YL, Wang Y, Gu SH, Lin QB, Wang D, Jiang L, Su N, Zhang X, Liu LL, Cheng ZJ, Lei CL, Wang JL, Guo XP, Wu FQ, Ikehashi H, Wang HY, Wan JM (2011) Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23:111–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55:266–277

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Dun XL, Zhou ZF, Xia SQ, Yi B, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD (2010) A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development. Plant Mol Biol 72:111–123

    Article  CAS  PubMed  Google Scholar 

  • Zhu EG, You CJ, Wang SS, Cui J, Niu BX, Wang YX, Qi J, Ma H, Chang F (2015) The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J 83:976–990

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Houling Wang, Gongjun Shi, Baohua Li, Yu Chan (current address: University of California, Davis, CA, USA), Tao Xu, Guangchao Yu, and Fangyan Shi (current address: Shenyang Agricultural University, Shenyang, China) for providing us helpful advice and important comments on data analysis, as well as submitting and revising the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Number 31672144) and the Earmarked Fund for China Agriculture Research System (Grant Number CARS25A03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 235 kb)

Supplementary material 2 (TIFF 659 kb)

Supplementary material 3 (TIFF 525 kb)

Supplementary material 4 (TIFF 164 kb)

Supplementary material 5 (TIFF 567 kb)

Supplementary material 6 (TIFF 4919 kb)

Supplementary material 7 (TIFF 1354 kb)

Supplementary material 8 (TIFF 5721 kb)

Supplementary material 9 (XLS 19 kb)

Supplementary material 10 (XLS 23 kb)

Supplementary material 11 (XLS 20 kb)

Supplementary material 12 (XLS 6766 kb)

Supplementary material 13 (XLS 1429 kb)

Supplementary material 14 (XLS 225 kb)

Supplementary material 15 (XLS 79 kb)

Supplementary material 16 (XLS 165 kb)

Supplementary material 17 (XLS 33 kb)

Supplementary material 18 (XLS 29 kb)

Supplementary material 19 (XLS 156 kb)

Supplementary material 20 (XLS 158 kb)

Supplementary material 21 (XLS 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, Z., Ji, R. et al. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Mol Genet Genomics 292, 967–990 (2017). https://doi.org/10.1007/s00438-017-1324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1324-2

Keywords

Navigation