Skip to main content

Advertisement

Log in

Density functional study of H2O molecule adsorption on α-U(001) surface

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Periodic density functional theory (DFT) calculations were performed to investigate the adsorption of H2O on U(001) surface. The metallic nature of uranium atom and different adsorption sites of U(001) surface play key roles in the H2O molecular dissociate reaction. The long-bridge site is the most favorable site of H2O-U(001) adsorption configuration. The triangle-center site of the H atom is the most favorable site of HOH-U(001) adsorption configuration. The interaction between H2O and U surface is more evident on the first layer than that on any other two sub-layers. The dissociation energy of one hydrogen atom from H2O is −1.994 to −2.215 eV on U(001) surface, while the dissociating energy decreases to −3.351 to −3.394 eV with two hydrogen atoms dissociating from H2O. These phenomena also indicate that the Oads can promote the dehydrogenation of H2O. A significant charge transfer from the first layer of the uranium surface to the H and O atoms is also found to occur, making the bonding partly ionic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soderlind P, Johansson B (1995) Nature 374(6522):524525

    Article  Google Scholar 

  2. Lyon SB (2010) Shreirs. Corrosion 21812191

  3. Mattox D, Bland R (1967) J Nucl Mater 21(3):349352

    Article  Google Scholar 

  4. Long Z, Liu K, Bai B, Yan D (2010) J Alloys Compd 491(1):252257

    Google Scholar 

  5. Winer K, Colmenares CA, Smith RL (1987) Surf Sci 183(1):6799

    Google Scholar 

  6. Ritchie AG (1984) J Nucl Mater 120(2):143153

    Google Scholar 

  7. Allen GC, Tucker PM, Lewis RA (1984) J Chem Soc Faraday Trans 8(8):9911000

    Google Scholar 

  8. Mcgillivray GW (1994) J Nucl Mater 208(1):8197

    Google Scholar 

  9. Bloch J, Mintz MH (1981) J Less Common Met 81(2):301320

    Article  Google Scholar 

  10. McLean W, Colmenares C, Smith R, Somorjai G (1982) Phys Rev B 25(1):8

    Article  CAS  Google Scholar 

  11. Wang X, Fu Y, Xie R (1998) J Nucl Tech 21(4):233237

    Google Scholar 

  12. Li G, Luo W, Chen H (2010) Chem Res Appl 22(10):12831289

    Google Scholar 

  13. Xiulin Z, Shanqisong H, Xuehai J (2013) J Radional Nucl Chem 298:481484

    Google Scholar 

  14. Nie J, Xiao H, Zu XT, Gao F. J Phys Condens Matter 20(44): 445001

  15. Ray A, Dholabhai P (2007) J Alloys Compd 356:31

    Google Scholar 

  16. BiTao X, DaQiao M, WeiDong X, ZhengHe Z, Gang J, HongYan W (2003) Acta Phys Sin 52(7):16171623

    Google Scholar 

  17. Li G, Luo W, Chen H (2011) Acta Phys -Chim Sin 27(10):23192325

    Google Scholar 

  18. Huda MN, Ray AK (2005) Int J Quantum Chem 102:098105

    Article  Google Scholar 

  19. Taylor CD (2008) Phys Rev B 77:094119

    Article  Google Scholar 

  20. Kozimor SA, Yang P, Batista ER, Boland KS, Burns CJ, Clark DL, Conradson SD, Martin RL, Wilkerson MP, Wolfsberg LE (2009) J Am Chem Soc 131(34):1212512136

    Article  Google Scholar 

  21. Su QL, Deng HQ, Ao BY, Xiao SF, Li XF, Chen PH, Hu WY (2014) J Appl Phys 115:123

    Article  Google Scholar 

  22. Zhao JY, Zhao FQ, Gao HX (2013) J Mol Model 4:19

    Google Scholar 

  23. Balasubramanian K, Siekhaus WJ (2003) J Chem Phys 119(12):58895900

    Article  Google Scholar 

  24. Allen GC, Crofts JA, Curtis MT (1974) J Chem Soc Dalton Trans 12(12):12961301

    Google Scholar 

  25. Nie JL, Xiao HY, Gao F (2009) J Alloys Compd 476(1):675682

    Google Scholar 

  26. Suvorov AL (1977) Sov At Energy 42(4):312317

    Article  Google Scholar 

  27. Liu R (2013) Comput Theor Chem 1019:141145

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Grant No. 21101070) and the Funding from the Science and Technology on Combustion and Explosion Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanqisong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zeng, XL., Zhao, FQ. et al. Density functional study of H2O molecule adsorption on α-U(001) surface. J Mol Model 22, 88 (2016). https://doi.org/10.1007/s00894-016-2956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2956-6

Keywords

Navigation