Skip to main content
Log in

Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We report a synthesis of microporous organic nanotube networks (MONNs) by a combination of hyper cross-linking and molecular templating of core-shell bottlebrush copolymers. The intrabrush and interbrush cross-linking of polystyrene (PS) shell layer in the core-shell bottlebrush copolymers led to the formation of micropores and large-sized nanopores (meso/macrospores) in MONNs, respectively, while selective removal of polylactide (PLA) core layer generated mesoporous tubular structure. The size of PLA-templated mesoporous cores and porous structure both at micro- and meso-scale could be controlled by simple tuning of the ratio of core/shell or the PLA core fraction in the bottlebrush precursors. Moreover, the resultant MONNs showed a highly selective adsorption capacity for the positively charged dyes on the basis of multi-porosity and carboxylate group-rich structure. In addition, MONNs also exhibited effective performance in size-selective adsorption of biomacromolecules. This work represents a new avenue for the preparation of MONNs and also provides a new application for molecular bottlebrushes in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Q.; Dai, Z. F.; Meng, X. J.; Xiao, F. S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev. 2015, 44, 6018–6034.

    Article  CAS  Google Scholar 

  2. Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883.

    Article  CAS  Google Scholar 

  3. Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20637–20640.

    Article  CAS  Google Scholar 

  4. McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35, 675–683.

    Article  CAS  Google Scholar 

  5. Dawson, R.; Cooper, A. I.; Adams, D. J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563.

    Article  CAS  Google Scholar 

  6. Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  CAS  Google Scholar 

  7. El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

    Article  CAS  Google Scholar 

  8. Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011, 44, 2410–2414.

    Article  CAS  Google Scholar 

  9. Germain, J.; Frechet, J. M.; Svec, F. Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption. Chem. Commun. 2009, 1526–1528.

    Google Scholar 

  10. Tsyurupa, M. P.; Davankov, V. A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React. Funct. Polym. 2006, 66, 768–779.

    Article  CAS  Google Scholar 

  11. Liang, Y.; Chen, L.; Zhuang, D.; Liu, H.; Fu, R.; Zhang, M.; Wu, D.; Matyjaszewski, K. Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. Chem. Sci. 2017, 8, 2101–2106.

    Article  CAS  Google Scholar 

  12. Liu, H.; Li, S.; Yang, H.; Liu, S.; Chen, L.; Tang, Z.; Fu, R.; Wu, D. Stepwise crosslinking: a facile yet versatile conceptual strategy to nanomorphology-persistent porous organic polymers. Adv. Mater. 2017, DOI: 10.1002/adma.201700723.

    Google Scholar 

  13. Wang, S.; Zhang, C.; Shu, Y.; Jiang, S.; Xia, Q.; Chen, L.; Jin, S.; Hussain, I.; Cooper, A. I.; Tan, B. Layered microporous polymers by solvent knitting method. Sci. Adv. 2017, 3, e1602610.

    Article  Google Scholar 

  14. Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2004, 230–231.

    Google Scholar 

  15. Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Niu, H.; Jones, J. T.; Khimyak, Y. Z.; Cooper, A. I. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 2008, 130, 7710–7720.

    Article  CAS  Google Scholar 

  16. Tozawa, T.; Jones, J. T.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M.; Steiner, A.; Cooper, A. I. Porous organic cages. Nat. Mater. 2009, 8, 973–978.

    Article  CAS  Google Scholar 

  17. Li, B.; Yang, X.; Xia, L.; Majeed, M. I.; Tan, B. Hollow microporous organic capsules. Sci. Rep. 2013, 3, DOI: 10.1038/srep02128.

    Google Scholar 

  18. Pachfule, P.; Kandmabeth, S.; Mallick, A.; Banerjee, R. Hollow tubular porous covalent organic framework (COF) nanostructures. Chem. Commun. 2015, 51, 11717–11720.

    Article  CAS  Google Scholar 

  19. Chun, J.; Park, J. H.; Kim, J.; Lee, S. M.; Kim, H. J.; Son, S. U. Tubular-shape evolution of microporous organic networks. Chem. Mater. 2012, 24, 3458–3463.

    Article  CAS  Google Scholar 

  20. Beers, K. L.; Gaynor, S. G.; Matyjaszewski, K.; Sheiko, S. S.; Moller, M. The synthesis of densely grafted copolymers by atom transfer radical polymerization. Macromolecules 1998, 31, 9413–9415.

    Article  CAS  Google Scholar 

  21. Zhang, M.; Müller, A. H. E. Cylindrical polymer brushes. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 3461–3481.

    Article  CAS  Google Scholar 

  22. Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci. 2008, 33, 759–785.

    Article  CAS  Google Scholar 

  23. Mullner, M.; Yuan, J. Y.; Weiss, S.; Walther, A.; Fortsch, M.; Drechsler, M.; Muller, A. H. E. Water-soluble organo-silica hybrid nanotubes templated by cylindrical polymer brushes. J. Am. Chem. Soc. 2010, 132, 16587–16592.

    Article  Google Scholar 

  24. Huang, K.; Rzayev, J. Well-defined organic nanotubes from multicomponent bottlebrush copolymers. J. Am. Chem. Soc. 2009, 131, 6880–6885.

    Article  CAS  Google Scholar 

  25. Huang, K.; Rzayev, J. Charge and size selective molecular transport by amphiphilic organic nanotubes. J. Am. Chem. Soc. 2011, 133, 16726–16729.

    Article  CAS  Google Scholar 

  26. Huang, K.; Canterbury, D. P.; Rzayev, J. Organosoluble polypyrrole nanotubes from core-shell bottlebrush copolymers. Chem. Commun. 2010, 46, 6326–6328.

    Article  CAS  Google Scholar 

  27. Mao, H.; Hillmyer, M. A. Macroscopic samples of polystyrene with ordered three-dimensional nanochannels. Soft Matter 2006, 2, 57–59.

    Article  CAS  Google Scholar 

  28. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J. Am. Chem. Soc. 2002, 124: 12761–12773.

    Article  CAS  Google Scholar 

  29. Xu, S.; Luo, Y.; Tan, B. Recent development of hypercrosslinked microporous organic polymers. Macromol. Rapid Commun. 2013, 34, 471–484.

    Article  CAS  Google Scholar 

  30. Zhang, X.; Shen, S.; Fan, L. Studies progress of preparation, properties and applications of hyper-cross-linked polystyrene networks. J. Mater. Sci.. 2007, 42, 7621–7629.

    Article  CAS  Google Scholar 

  31. Wu, D. C.; Nese, A.; Pietrasik, J.; Liang, Y. R.; He, H. K.; Kruk, M.; Huang, L.; Kowalewski, T.; Matyjaszewski, K. Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes. ACS Nano. 2012, 6, 6208–6214.

    Article  CAS  Google Scholar 

  32. Xu, Y.; Wang, T.; He, Z.; Zhong, A.; Huang, K. Carboxylcontaining microporous organic nanotube networks as a platform for Pd catalysts. RSC Adv. 2016, 6, 39933–39939.

    Article  CAS  Google Scholar 

  33. Xu, Y.; Wang, T.; He, Z.; Zhong, A.; Huang, K. Well-dispersed gold nanoparticles anchored into thiol-functionalized hierarchically porous materials for catalytic applications. Micropor. Mesopor. Mat. 2016, 229, 1–7.

    Article  CAS  Google Scholar 

  34. Lai, J. T.; Filla, D.; Shea, R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient raft agents. Macromolecules 2002, 35, 6754–6756.

    Article  CAS  Google Scholar 

  35. Benaglia, M.; Rizzardo, E.; Alberti, A.; Guerra, M. Searching for more effective agents and conditions for the RAFT polymerization of MMA: influence of dithioester substituents, solvent, and temperature. Macromolecules 2005, 38, 3129–3140.

    Article  CAS  Google Scholar 

  36. Sun, Z.; Deng, Y.; Wei, J.; Gu, D.; Tu, B.; Zhao, D. Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chem. Mater. 2011, 23, 2176–2184.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51273066 and 21574042), and Shanghai Pujiang Program (No. 13PJ1402300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Huang.

Electronic supplementary material

10118_2018_2007_MOESM1_ESM.pdf

Microporous Organic Nanotube Networks from Hyper Cross-linking Core-shell Bottlebrush Copolymers for Selective Adsorption Study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TQ., Xu, Y., He, ZD. et al. Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chin J Polym Sci 36, 98–105 (2018). https://doi.org/10.1007/s10118-018-2007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2007-0

Keywords

Navigation