Skip to main content
Log in

Novel Near-Lossless Compression Algorithm for Medical Sequence Images with Adaptive Block-Based Spatial Prediction

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

To address the low compression efficiency of lossless compression and the low image quality of general near-lossless compression, a novel near-lossless compression algorithm based on adaptive spatial prediction is proposed for medical sequence images for possible diagnostic use in this paper. The proposed method employs adaptive block size-based spatial prediction to predict blocks directly in the spatial domain and Lossless Hadamard Transform before quantization to improve the quality of reconstructed images. The block-based prediction breaks the pixel neighborhood constraint and takes full advantage of the local spatial correlations found in medical images. The adaptive block size guarantees a more rational division of images and the improved use of the local structure. The results indicate that the proposed algorithm can efficiently compress medical images and produces a better peak signal-to-noise ratio (PSNR) under the same pre-defined distortion than other near-lossless methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Placidi G: Adaptive compression algorithm from projections: Application on medical greyscale images. Comput Biol Med 39(11):993–999, 2009

    Article  PubMed  Google Scholar 

  2. Fidler A, Skaleric U, Likar B: The impact of image information on compressibility and degradation in medical image compression. Med Phys 33(8):2832–2838, 2006

    Article  PubMed  Google Scholar 

  3. Chen K, Ramabadran TV: Near-lossless compression of medical images through entropy-coded DPCM. IEEE Trans Med Imaging 13(3):538–548, 1994

    Article  CAS  PubMed  Google Scholar 

  4. Singh S, Kumar V, Verma HK: Adaptive threshold-based block classification in medical image compression for teleradiology. Comput Biol Med 37(6):811–819, 2007

    Article  PubMed  Google Scholar 

  5. Lee JO, Jang SK, Chen QS, et al: An efficient frame rate up-conversion method for mobile phone with projection functionality. IEEE Trans Consum Electron 53(4):1615–1621, 2007

    Article  Google Scholar 

  6. Muhit AA, Pickering MR, Frater MR, et al: Video coding using fast geometry-adaptive partitioning and an elastic motion model. J Vis Commun Image Represent 23(1):31–41, 2012

    Article  Google Scholar 

  7. Zhao XO, He ZH: Lossless image compression using super-spatial structure prediction. IEEE Signal Process Lett 17(4):383–386, 2010

    Article  Google Scholar 

  8. Hartenstein H, Herz R, Saupe D: A comparative study of L1 distortion limited image compression algorithms. Proc Picture Coding Symp 51:55, 1997

    Google Scholar 

  9. Aràndiga F, Mulet P, Renau V: Lossless and near-lossless image compression based on multiresolution analysis. J Comput Appl Math 242:70–81, 2013

    Article  Google Scholar 

  10. Caldelli R, Filippini F, Barni M: Joint near-lossless compression and watermarking of still images for authentication and tamper localization. Signal Process-Image Commun 21(10):890–903, 2006

    Article  Google Scholar 

  11. ISO/IEC 14495–1: Information Technology-Lossless and Near-lossless Compression of Continuous Tone Still Images: Baseline. Dec. 1999. JPEG-LS source code available at: http://www.stat.columbia.edu/%7Ejakulin/jpeg-ls/mirror.htm, 1999

  12. Miguel A, Riskin E, Ladner R, et al: Near-lossless and lossy compression of imaging spectrometer data: comparison of information extraction performance. SIViP 6(4):597–611, 2012

    Article  Google Scholar 

  13. Yea S, Pearlman W: A wavelet-based two-stage near-lossless coder. IEEE Trans Image Process 15(11):3488–3500, 2006

    Article  PubMed  Google Scholar 

  14. Koga T: Motion-compensated interframe coding for video conferencing. Proc NTC’81. 1981: C9. 6.1-9.6.5

  15. Ghanbari M: The cross-search algorithm for motion estimation. IEEE Trans Commun 38(7):950–953, 1990

    Article  Google Scholar 

  16. Moshnyaga VG: A new computationally adaptive formulation of block-matching motion estimation. IEEE Trans Circuits Syst Video Technol 11(1):118–124, 2001

    Article  Google Scholar 

  17. Lin Y, Zhuang Q, Yang R: Image reconstruction of dynamic MRI based on adaptive motion estimation. IEEE Int Conf ICARCV 1586–1590, 2012

  18. Chen J, Zhou J, Yu S, et al: A Very Low Bit Rate Video Coding Combined with Fast Adaptive Block Size Motion Estimation and Nonuniform Scalar Quantization Multiwavelet Transform. Multimed Tools Appl 26(1):123–144, 2005

    Article  CAS  Google Scholar 

  19. Wei ST, Tien CW, Liu BD, et al: Adaptive truncation algorithm for Hadamard-transformed H. 264/AVC lossless video coding. IEEE Trans Circuits Syst Video Technol 21(5):538–549, 2011

    Article  Google Scholar 

  20. Lim C, Kim G, Yoon C, et al: Context modeling based lossless compression of radio-frequency data for software-based ultrasound beamforming. Biomed Signal Process 8(6):682–687, 2013

    Article  Google Scholar 

  21. Sun J, Ren G, Wu Q: Image compression algorithm based on adaptive exp-Golomb coding. Opt Precis Eng 21(11):2973–2979, 2013

    Article  Google Scholar 

  22. Nelson M, Gailly J L: The data compression book. New York: M&T Books, 1996, Chapter 6, order 3 arithmetic coding

  23. Computer Vision Group [online]: Available at: http://decsai.ugr.es/cvg/index2.php. Accessed Aug 2011

  24. Wu X, Memon N: CALIC—a context based adaptive lossless image codec. Proc ICASSP. 1996, 4: 1890–1893. CALIC source code available at: http://compression.graphicon.ru/download/sources/i_glless/codec.zip

  25. ISO/IEC JTC 1/SC 29/WG 1, ISO/IEC FCD 15444–1, Information Technology – JPEG 2000 Image Coding System, 2000. JPEG2000 source code available at: http://www.kakadusoftware.com/

  26. Said A, Pearlman W: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250, 1996

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 61574102, 61404094, and 61204096), the Fundamental Research Fund for the Central Universities, Wuhan University (grant no 2042014kf0238), and the Hubei Province Science & Technology Pillar Program (grant no. 2015CFB536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Huang, Q., Chang, S. et al. Novel Near-Lossless Compression Algorithm for Medical Sequence Images with Adaptive Block-Based Spatial Prediction. J Digit Imaging 29, 706–715 (2016). https://doi.org/10.1007/s10278-016-9892-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-016-9892-y

Keywords

Navigation