Skip to main content
Log in

Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Circulating tumor cells (CTCs), which are derived from primary tumor site and transported to distant organs, are considered as the major cause of metastasis. So far, various techniques have been applied for CTC isolation and enumeration. However, there exists great demand to improve the sensitivity of CTC capture, and it remains challenging to elute the cells efficiently from device for further biomolecular and cellular analyses. In this study, we fabricate a dual functional chip integrated with herringbone structure and micropost array to achieve CTC capture and elution through EpCAM-based immunoreaction. Hep3B tumor cell line is selected as the model of CTCs for processing using this device. The results demonstrate that the capture limit of Hep3B cells can reach up to 10 cells (per mL of sample volume) with capture efficiency of 80 % on average. Moreover, the elution rate of the captured Hep3B cells can reach up to 69.4 % on average for cell number ranging from 1 to 100. These results demonstrate that this device exhibits dual functions with considerably high capture rate and elution rate, indicating its promising capability for cancer diagnosis and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A. Alazzam, I. Stiharu, R. Bhat, A.N. Meguerditchian, Electrophoresis 32, 1327 (2011)

    Article  Google Scholar 

  • S.K. Arya, B. Lim, A.R.A. Rahman, Lab Chip 13, 1995 (2013)

    Article  Google Scholar 

  • F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, Proc. Natl. Acad. Sci. U. S. A. 92, 860 (1995)

    Article  Google Scholar 

  • G.T. Budd, M. Cristofanilli, M.J. Ellis, A. Stopeck, E. Borden, M.C. Miller, J. Matera, M. Repollet, G.V. Doyle, L.W.M.M. Terstappen, D.F. Hayes, Clin. Cancer Res. 12, 6403 (2006)

    Article  Google Scholar 

  • D.C. Danila, M. Fleisher, H.I. Scher, Clin. Cancer Res. 17, 3903 (2011)

    Article  Google Scholar 

  • J. den Toonder, Lab Chip 11, 375 (2011)

    Article  Google Scholar 

  • L.A. Devriese, A.J. Bosma, M.M. van de Heuvel, W. Heemsbergen, E.E. Voest, J.H.M. Schellens, Lung Cancer 75, 242 (2012)

    Article  Google Scholar 

  • J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Lab Chip 10, 27 (2010)

    Article  Google Scholar 

  • G.P. Gupta, J. Massague, Cell 127, 679 (2006)

    Article  Google Scholar 

  • V. Gupta, I. Jafferji, M. Garza, V.O. Melnikova, D.K. Hasegawa, R. Pethig, D.W. Davis, Biomicrofluidics 6, 024133 (2012)

    Article  Google Scholar 

  • J.D. Hirsch, L. Eslamizar, B.J. Filanoski, N. Malekzadeh, R.P. Haugland, J.M. Beechem, R.P. Haugland, Anal. Biochem. 308, 343 (2002)

    Article  Google Scholar 

  • K. Hoshino, Y.Y. Huang, N. Lane, M. Huebschman, J.W. Uhr, E.P. Frenkel, X.J. Zhang, Lab Chip 11, 3449 (2011)

    Article  Google Scholar 

  • S.C. Hur, A.J. Mach, D. Di Carlo, Biomicrofluidics 5, 022206 (2011)

    Article  Google Scholar 

  • J.H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, D.E. Ingber, Lab Chip 12, 2175 (2012)

    Article  Google Scholar 

  • S.I. Kim, H.I. Jung, J. Breast Cancer 13, 125 (2010)

    Article  MathSciNet  Google Scholar 

  • M.Y. Kim, T. Oskarsson, S. Acharyya, D.X. Nguyen, X.H.F. Zhang, L. Norton, J. Massague, Cell 139, 1315 (2009)

    Article  Google Scholar 

  • S. Kim, S.I. Han, M.J. Park, C.W. Jeon, Y.D. Joo, I.H. Choi, K.H. Han, Anal. Chem. 85, 2779 (2013)

    Article  Google Scholar 

  • O. Kimura, Y. Kondo, T. Kogure, E. Kakazu, M. Ninomiya, T. Iwata, T. Morosawa, T. Shimosegawa, Biomed. Res. Int. 2014 (2014)

  • J.G. Kralj, C. Arya, A. Tona, T.P. Forbes, M.S. Munson, L. Sorbara, S. Srivastava, S.P. Forry, Lab Chip 12, 4972 (2012)

    Article  Google Scholar 

  • L.A. Liotta, J. Kleinerm, G.M. Saidel, Cancer Res. 34, 997 (1974)

    Google Scholar 

  • M. Mego, S.A. Mani, M. Cristofanilli, Nat. Rev. Clin. Oncol. 7, 701 (2010)

    Article  Google Scholar 

  • M.C. Miller, G.V. Doyle, L.W. Terstappen, J. Oncol. 2010, 617421 (2010)

    Article  Google Scholar 

  • H.S. Moon, K. Kwon, S.I. Kim, H. Han, J. Sohn, S. Lee, H.I. Jung, Lab Chip 11, 1118 (2011)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235 (2007)

    Article  Google Scholar 

  • J.M.K. Ng, I. Gitlin, A.D. Stroock, G.M. Whitesides, Electrophoresis 23, 3461 (2002)

    Article  Google Scholar 

  • L. Norton, J. Massague, Nat. Med. 12, 875 (2006)

    Article  Google Scholar 

  • A.M. Sieuwerts, S.S. Jeffrey, Recent Results Cancer Res. 195, 125 (2012)

    Article  Google Scholar 

  • S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Proc. Natl. Acad. Sci. U. S. A. 107, 18392 (2010)

    Article  Google Scholar 

  • J.S. Sun, M.M. Li, C. Liu, Y. Zhang, D.B. Liu, W.W. Liu, G.Q. Hu, X.Y. Jiang, Lab Chip 12, 3952 (2012)

    Article  Google Scholar 

  • S.J. Tan, L. Yobas, G.Y.H. Lee, C.N. Ong, C.T. Lim, Biomed. Microdevices 11, 883 (2009)

    Article  Google Scholar 

  • A. van de Stolpe, K. Pantel, S. Sleijfer, L.W. Terstappen, J.M.J. den Toonder, Cancer Res. 71, 5955 (2011)

    Article  Google Scholar 

  • P. Xue, K. Ye, J. Gao, Y.F. Wu, J.H. Guo, K.M. Hui, Y.J. Kang, Microfluid. Nanofluid. 16, 605 (2014)

    Article  Google Scholar 

  • S.Y. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, Biomed. Microdevices 13, 203 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Tier 2 Academic Research Fund (ARC 22/13) and a Tier 1 Academic Research Fund (RG 37/14) from the Ministry of Education of Singapore awarded to Y.K. The Ph.D. scholarship from Nanyang Technological University awarded to P.X. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, P., Wu, Y., Guo, J. et al. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomed Microdevices 17, 39 (2015). https://doi.org/10.1007/s10544-015-9945-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9945-x

Keywords

Navigation