Skip to main content

Advertisement

Log in

Melatonin Attenuates Pain Hypersensitivity and Decreases Astrocyte-Mediated Spinal Neuroinflammation in a Rat Model of Oxaliplatin-Induced Pain

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Neuroinflammatory response in spinal dorsal horn has been demonstrated to be a critical factor in oxaliplatin-induced pain. Melatonin has been shown to have anti-inflammatory and anti-allodynia effects in both preclinical and clinical studies. In the present study, we investigated the role of systemic administration of melatonin on oxaliplatin-induced pain. Intraperitoneal (i.p.) injection with oxaliplatin induced significantly mechanical allodynia and thermal hyperalgesia. Melatonin (i.p.) significantly alleviated mechanical allodynia and thermal hyperalgesia in the oxaliplatin but not sham-treated rats. The attenuation of nociceptive response persisted at least to 3 days after melatonin injection, throughout the entire observing window. Immunohistochemistry showed that oxaliplatin induced a significant increase of glial fibrillary acidic protein (GFAP) immunodensities, which could be suppressed by melatonin. Western blotting showed that GFAP protein levels were significantly elevated in the oxaliplatin-vehicle group. Melatonin significantly decreased oxaliplatin-induced upregulation of GFAP expressions. Oxaliplatin injection also enhanced the messenger RNA (mRNA) expressions of cytokines including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and chemokines including monocyte chemoattractant protein-1 (MCP-1) and monocyte inflammatory protein-1 (MIP-1α) in the spinal dorsal horn, which could be significantly repressed by melatonin. In vitro study showed that mRNA levels of TNF-α, IL-1β, MCP-1, and MIP-1α in primarily astrocytes were significantly increased after lipopolysaccharide (LPS, 1 μg/ml) stimulation. Melatonin (10 and 100 μM) greatly inhibited synthesis of these inflammatory mediators, in a dose-related manner. Conclusively, our data provide a novel implication of anti-nociceptive mechanism of melatonin in chemotherapy-related pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

GAPDH:

Glyceraldehyde-3-phosphate-dehydrogenase

GFAP:

Glial fibrillary acidic protein

IL-1β:

Interleukin-1β

i.p. :

Intraperitoneal

LPS:

Lipopolysaccharide

MCP-1:

Monocyte chemoattractant protein-1

MIP-1α:

Monocyte inflammatory protein-1

NFκB:

Nuclear factor kappa B

PB:

Phosphate buffer

PCR:

Polymerase chain reaction

PWL:

Paw withdrawal latency

PWT:

Paw withdrawal threshold

TLRs:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

References

  1. Agboola, S.O., W. Ju, A. Elfiky, J.C. Kvedar, and K. Jethwani. 2015. The effect of technology-based interventions on pain, depression, and quality of life in patients with cancer: a systematic review of randomized controlled trials. Journal of Medical Internet Research 17 (3): e65.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ambriz-Tututi, M., H.I. Rocha-Gonzalez, S.L. Cruz, and V. Granados-Soto. 2009. Melatonin: a hormone that modulates pain. Life Sciences 84 (15–16): 489–498.

    Article  CAS  PubMed  Google Scholar 

  3. Areti, A., P. Komirishetty, M. Akuthota, R.A. Malik, and A. Kumar. 2017. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. Journal of Pineal Research 62 (3).

  4. Blask, D.E., R.T. Dauchy, L.A. Sauer, J.A. Krause, and G.C. Brainard. 2002. Light during darkness, melatonin suppression and cancer progression. Neuro Endocrinology Letters 23 (Suppl 2): 52–56.

    PubMed  Google Scholar 

  5. Blask, D.E., L.A. Sauer, and R.T. Dauchy. 2002. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Current Topics in Medicinal Chemistry 2 (2): 113–132.

    Article  CAS  PubMed  Google Scholar 

  6. Carozzi, V.A., A. Canta, and A. Chiorazzi. 2015. Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neuroscience Letters 596: 90–107.

    Article  CAS  PubMed  Google Scholar 

  7. Cersosimo, R.J. 2005. Oxaliplatin-associated neuropathy: a review. The Annals of Pharmacotherapy 39 (1): 128–135.

    Article  CAS  PubMed  Google Scholar 

  8. Chaplan, S.R., F.W. Bach, J.W. Pogrel, J.M. Chung, and T.L. Yaksh. 1994. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods 53 (1): 55–63.

    Article  CAS  PubMed  Google Scholar 

  9. Chung, Y.H., and D. Kim. 2016. Enhanced TLR4 expression on colon cancer cells after chemotherapy promotes cell survival and epithelial-mesenchymal transition through phosphorylation of GSK3beta. Anticancer Research 36 (7): 3383–3394.

    CAS  PubMed  Google Scholar 

  10. Di Cesare Mannelli, L., A. Pacini, L. Bonaccini, M. Zanardelli, T. Mello, and C. Ghelardini. 2013. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. The Journal of Pain 14 (12): 1585–1600.

    Article  PubMed  Google Scholar 

  11. Di Cesare Mannelli, L., A. Pacini, L. Micheli, A. Tani, M. Zanardelli, and C. Ghelardini. 2014. Glial role in oxaliplatin-induced neuropathic pain. Experimental Neurology 261: 22–33.

    Article  PubMed  Google Scholar 

  12. Ding, K., H. Wang, J. Xu, X. Lu, L. Zhang, and L. Zhu. 2014. Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: possible involvement of mTOR pathway. Neurochemistry International 76: 23–31.

    Article  CAS  PubMed  Google Scholar 

  13. Ebadi, M., P. Govitrapong, P. Phansuwan-Pujito, F. Nelson, and R.J. Reiter. 1998. Pineal opioid receptors and analgesic action of melatonin. Journal of Pineal Research 24 (4): 193–200.

    Article  CAS  PubMed  Google Scholar 

  14. El-Shenawy, S.M., O.M. Abdel-Salam, A.R. Baiuomy, S. El-Batran, and M.S. Arbid. 2002. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacological Research 46 (3): 235–243.

    Article  CAS  PubMed  Google Scholar 

  15. Esposito, E., I. Paterniti, E. Mazzon, P. Bramanti, and S. Cuzzocrea. 2010. Melatonin reduces hyperalgesia associated with inflammation. Journal of Pineal Research 49 (4): 321–331.

    Article  CAS  PubMed  Google Scholar 

  16. Fu, J., X. Xia, Z. Liu, Y. Wang, Y. Wang, Q. Shi, X. Song, E. Song, and Y. Song. 2017. The acute exposure of tetrachloro-p-benzoquinone (a.k.a. chloranil) triggers inflammation and neurological dysfunction via toll-like receptor 4 signaling: the protective role of melatonin preconditioning. Toxicology 381: 39–50.

    Article  CAS  PubMed  Google Scholar 

  17. Gao, Y.J., and R.R. Ji. 2010. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7 (4): 482–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, Y.J., L. Zhang, O.A. Samad, M.R. Suter, K. Yasuhiko, Z.Z. Xu, J.Y. Park, A.L. Lind, Q. Ma, and R.R. Ji. 2009. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. The Journal of Neuroscience 29 (13): 4096–4108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia-Perganeda, A., J.M. Guerrero, M. Rafii-El-Idrissi, M. Paz Romero, D. Pozo, and J.R. Calvo. 1999. Characterization of membrane melatonin receptor in mouse peritoneal macrophages: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Journal of Neuroimmunology 95 (1–2): 85–94.

    Article  CAS  PubMed  Google Scholar 

  20. Han, Y., and M.T. Smith. 2013. Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Frontiers in Pharmacology 4: 156.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heiman, A., A. Pallottie, R.F. Heary, and S. Elkabes. 2014. Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain, Behavior, and Immunity 42: 232–245.

    Article  CAS  PubMed  Google Scholar 

  22. Hu, Y., Z. Wang, S. Pan, H. Zhang, M. Fang, H. Jiang, H. Zhang, et al. 2017. Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/NF-kappaB signaling pathway after LPS treatment in neonatal rats. Oncotarget 8 (19): 31638–31654.

    PubMed  PubMed Central  Google Scholar 

  23. Ismail, S.A., and H.A. Mowafi. 2009. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataract surgery under topical anesthesia. Anesthesia and Analgesia 108 (4): 1146–1151.

    Article  CAS  PubMed  Google Scholar 

  24. Kawasaki, Y., L. Zhang, J.K. Cheng, and R.R. Ji. 2008. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. The Journal of Neuroscience 28 (20): 5189–5194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelland, L. 2007. The resurgence of platinum-based cancer chemotherapy. Nature Reviews. Cancer 7 (8): 573–584.

    Article  CAS  PubMed  Google Scholar 

  26. Kiguchi, N., Y. Kobayashi, and S. Kishioka. 2012. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Current Opinion in Pharmacology 12 (1): 55–61.

    Article  CAS  PubMed  Google Scholar 

  27. Konturek, S.J., O. Zayachkivska, X.O. Havryluk, T. Brzozowski, Z. Sliwowski, M. Pawlik, P.C. Konturek, M. Czesnikiewicz-Guzik, M.R. Gzhegotsky, and W.W. Pawlik. 2007. Protective influence of melatonin against acute esophageal lesions involves prostaglandins, nitric oxide and sensory nerves. Journal of Physiology and Pharmacology 58 (2): 361–377.

    CAS  PubMed  Google Scholar 

  28. Lin, S.H., Y.N. Huang, J.H. Kao, L.T. Tien, R.Y. Tsai, and C.S. Wong. 2016. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression. Life Sciences 152: 38–43.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, T., Q. Han, G. Chen, Y. Huang, L.X. Zhao, T. Berta, Y.J. Gao, and R.R. Ji. 2016. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 157 (4): 806–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loiseau, F., C. Le Bihan, M. Hamon, and M.H. Thiebot. 2006. Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. European Neuropsychopharmacology 16 (6): 417–428.

    Article  CAS  PubMed  Google Scholar 

  31. Matsushita, K., H. Tozaki-Saitoh, C. Kojima, T. Masuda, M. Tsuda, K. Inoue, and S. Hoka. 2014. Chemokine (C-C motif) receptor 5 is an important pathological regulator in the development and maintenance of neuropathic pain. Anesthesiology 120 (6): 1491–1503.

    Article  CAS  PubMed  Google Scholar 

  32. Raghavendra, V., J.N. Agrewala, and S.K. Kulkarni. 2000. Melatonin reversal of lipopolysacharides-induced thermal and behavioral hyperalgesia in mice. European Journal of Pharmacology 395 (1): 15–21.

    Article  CAS  PubMed  Google Scholar 

  33. Robinson, C.R., H. Zhang, and P.M. Dougherty. 2014. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 274: 308–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Romero-Sandoval, E.A., R.J. Horvath, and J.A. DeLeo. 2008. Neuroimmune interactions and pain: focus on glial-modulating targets. Current Opinion in Investigational Drugs 9 (7): 726–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanchez-Barcelo, E.J., S. Cos, D. Mediavilla, C. Martinez-Campa, A. Gonzalez, and C. Alonso-Gonzalez. 2005. Melatonin-estrogen interactions in breast cancer. Journal of Pineal Research 38 (4): 217–222.

    Article  CAS  PubMed  Google Scholar 

  36. Scarabelot, V.L., L.F. Medeiros, C. de Oliveira, L.N. Adachi, I.C. de Macedo, S.G. Cioato, J.S. de Freitas, et al. 2016. Melatonin alters the mechanical and thermal hyperalgesia induced by orofacial pain model in rats. Inflammation 39 (5): 1649–1659.

    Article  CAS  PubMed  Google Scholar 

  37. Srinivasan, V., S.R. Pandi-Perumal, D.W. Spence, A. Moscovitch, I. Trakht, G.M. Brown, and D.P. Cardinali. 2010. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Research Bulletin 81 (4–5): 362–371.

    Article  CAS  PubMed  Google Scholar 

  38. Sugden, D. 1983. Psychopharmacological effects of melatonin in mouse and rat. The Journal of Pharmacology and Experimental Therapeutics 227 (3): 587–591.

    CAS  PubMed  Google Scholar 

  39. Wang, Y.M., B.Z. Jin, F. Ai, C.H. Duan, Y.Z. Lu, T.F. Dong, and Q.L. Fu. 2012. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemotherapy and Pharmacology 69 (5): 1213–1220.

    Article  CAS  PubMed  Google Scholar 

  40. Xin, W., W. Chun, L. Ling, and W. Wei. 2012. Role of melatonin in the prevention of morphine-induced hyperalgesia and spinal glial activation in rats: protein kinase C pathway involved. The International Journal of Neuroscience 122 (3): 154–163.

    Article  CAS  PubMed  Google Scholar 

  41. Yoon, S.Y., C.R. Robinson, H. Zhang, and P.M. Dougherty. 2013. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. The Journal of Pain 14 (2): 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, R.X., B. Liu, A. Li, L. Wang, K. Ren, J.T. Qiao, B.M. Berman, and L. Lao. 2008. Interleukin 1beta facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation. Neuroscience 154 (4): 1533–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zimmermann, M. 1983. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16 (2): 109–110.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from Medicine Health Science and Technology Program of Zhejiang Province (No. 2017200948) and National Natural Science Foundation of China (No. 81471889).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen-sheng Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Ye-song Wang and Yuan-yuan Li contributed equally to this study.

Electronic supplementary material

Sup Fig. 1

Immunostaining of primary cultured astrocytes with the astrocytic marker glial fibrillary acidic protein (GFAP). (JPEG 402 kb)

High resolution image (TIFF 796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ys., Li, Yy., Cui, W. et al. Melatonin Attenuates Pain Hypersensitivity and Decreases Astrocyte-Mediated Spinal Neuroinflammation in a Rat Model of Oxaliplatin-Induced Pain. Inflammation 40, 2052–2061 (2017). https://doi.org/10.1007/s10753-017-0645-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0645-y

KEY WORDS

Navigation