Skip to main content
Log in

Unconventional Photon Blockade Based on Two-Photon Tunneling

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The study on the unconventional photon blockade mainly focus on Kerr nonlinearity. In this paper, we study the unconventional photon blockade based on another kind of nonlinearity, that is two-photon tunneling. The optimal conditions for strong antibunching are found by analytic calculations and numerical simulations, and the results are compared with the unconventional photon blockade based on Kerr nonlinearity, we find that the two-photon tunneling system has advantages for the larger antibunching area. Finally, we show that, after the symmetric-antisymmetric mode transformation, the two kinds of nonlinearities are equivalent from the perspective of photon antibunching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Imamoḡlu, A., Schmidt, H., Woods, G., Deutsch, M.: Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  2. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Nature (London) 436, 87 (2005)

    Article  ADS  Google Scholar 

  3. Faraon, A., Fushman, I., Englund, D., Stoltz, N., Petroff, P., Vučković, J.: Nature Phys. 4, 859 (2008)

    Article  ADS  Google Scholar 

  4. Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Tureci, H.E., Houck, A.A.: Phys. Rev. Lett. 107, 053602 (2011)

    Article  ADS  Google Scholar 

  5. Liu, Y.X., Xu, X.W., Miranowicz, A., Nori, F.: Phys. Rev. A 89, 043818 (2014)

    Article  ADS  Google Scholar 

  6. Tian, L., Carmichael, H.J.: Phys. Rev. A 46, R6801 (1992)

    Article  ADS  Google Scholar 

  7. Werner, M.J., Imamoḡlu, A.: Phys. Rev. A 61, 011801 (1999)

    Article  ADS  Google Scholar 

  8. Brecha, R.J., Rice, P.R., Xiao, M.: Phys. Rev. A 59, 2392 (1999)

    Article  ADS  Google Scholar 

  9. Rabl, P.: Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  Google Scholar 

  10. Nunnenkamp, A., Børkje, K., Girvin, S.M.: Phys. Rev. Lett. 107, 063602 (2011)

    Article  ADS  Google Scholar 

  11. Majumdar, A., Gerace, D.: Phys. Rev. B 87, 235319 (2013)

    Article  ADS  Google Scholar 

  12. Shen, H.Z., Zhou, Y.H., Yi, X.X.: Phys. Rev. A 90, 023849 (2014)

    Article  ADS  Google Scholar 

  13. Liew, T.C.H., Savona, V.: Phys. Rev. Lett. 104, 183601 (2010)

    Article  ADS  Google Scholar 

  14. Carmichael, H.J.: Phys. Rev. Lett. 55, 2790 (1985)

    Article  ADS  Google Scholar 

  15. Bamba, M., Imamoǧlu, A., Carusotto, I., Ciuti, C.: Phys. Rev. A 83 (R), 021802 (2011)

    Article  ADS  Google Scholar 

  16. Majumdar, A., Bajcsy, M., Rundquist, A., Vuc̆ković, J.: Phys. Rev. Lett. 108, 183601 (2012)

    Article  ADS  Google Scholar 

  17. Zhang, W., Yu, Z.Y., Liu, Y.M., Peng, Y.W.: Phys. Rev. A 89, 043832 (2014)

    Article  ADS  Google Scholar 

  18. Xu, X.W., Li, Y.: Phys. Rev. A 90, 033809 (2014)

    Article  ADS  Google Scholar 

  19. Xu, X.W., Li, Y.: J. Opt. B: At. Mol. Opt. Phys 46, 035502 (2013)

    ADS  Google Scholar 

  20. Kyriienko, O., Shelykh, I.A., Liew, T.C.H.: Phys. Rev. A 90, 033807 (2014)

    Article  ADS  Google Scholar 

  21. Ferretti, S., Savona, V., Gerace, D.: New J. Phys. 15, 025012 (2013)

    Article  ADS  Google Scholar 

  22. Flayac, H., Savona, V.: Phys. Rev. A 88, 033836 (2013)

    Article  ADS  Google Scholar 

  23. Xu, X.W., Li, Y.: Phys. Rev. A 90, 043822 (2014)

    Article  ADS  Google Scholar 

  24. Shen, H.Z., Zhou, Y.H., Yi, X.X.: Phys. Rev. A 91, 063808 (2015)

    Article  ADS  Google Scholar 

  25. Gerace, D., Savona, V.: Phys. Rev. A 89(R), 031803 (2014)

    Article  ADS  Google Scholar 

  26. Zhou, Y.H., Shen, H.Z., Yi, X.X.: Phys. Rev. A 92, 023838 (2015)

    Article  ADS  Google Scholar 

  27. Chang, D.E., Sorensen, A.S., Demler, E.A., Lukin, M.D.: Nat. Phys. 3, 807 (2007)

    Article  Google Scholar 

  28. Gerace, D., Tureci, H.E., Imamoglu, A., Giovannetti, V., Fazio, R.: Nat. Phys. 5, 281 (2009)

    Article  Google Scholar 

  29. Kyriienko, O., Liew, T.C.H.: Phys. Rev. A 90, 063805 (2014)

    Article  ADS  Google Scholar 

  30. Wang, K., Abraham, N.B.: Phys. Rev. A 50, 3322 (1994)

    Article  ADS  Google Scholar 

  31. Cristofolini, P., Christmann, G., Tsintzos, S.I., Deligeorgis, G., Konstantinidis, G., Hatzopoulos, Z., Savvidis, P.G., Baumberg, J.J.: Science 336, 704 (2012)

    Article  ADS  Google Scholar 

  32. Christmann, G., Askitopoulos, A., Deligeorgis, G., Hatzopoulos, Z., Tsintzos, S.I., Savvidis, P.G., Baumberg, J.J.: Appl. Phys. Lett. 98, 081111 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) under grant Nos 11534002 and 61475033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y.H., Shen, H.Z. Unconventional Photon Blockade Based on Two-Photon Tunneling. Int J Theor Phys 56, 2935–2943 (2017). https://doi.org/10.1007/s10773-017-3459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3459-7

Keywords

Navigation