Skip to main content
Log in

Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  2. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  3. Yu, X.T., Zhang, Z.C., Xu, J.: Distributed wireless quantum communication networks with partially entangled pairs. Chin. Phys. B 23, 010303 (2014)

    Article  ADS  Google Scholar 

  4. Zhao, Z., Yang, T., Chen, Y. A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bouwmeester, D., Pan, J.W., Matter, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  7. Huang, Yin, H., Wang, J.Y., Chen, Y.A., Peng, C.Z., Pan, J.W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)

    Article  ADS  Google Scholar 

  8. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Quantum teleportation across the Danube. Nature 430, 849 (2004)

    Article  ADS  Google Scholar 

  9. de Riedmatten, H., Marcikic, I., Tittel, W., Zbinden, H., Collins, D., Gisin, N.: Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004)

    Article  ADS  MATH  Google Scholar 

  10. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  11. Ma, X.S., Herbst, T., Scheidl, T., Wang, D.Q., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)

    Article  ADS  Google Scholar 

  12. Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)

    Article  ADS  Google Scholar 

  13. Hofheinz, M., Ansmann, E.M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Martinis, J.M., Cleland, A. N.: Generation of Fock states in a superconducting quantum circuit. Nature (London) 454, 310 (2008)

    Article  ADS  Google Scholar 

  14. Hu, L.Y., Jia, F., Zhang, Z.M.: Entanglement and nonclassicality of photon-added two-mode squeezed thermal state. J. Opt. Soc. Am. B 29, 1456–1464 (2012)

    Article  ADS  Google Scholar 

  15. Fan, H.Y., Meng, X.G., Wang, J.S.: New form of Legendre polynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics. Commun. Theor. Phys. 46, 845–848 (2006)

    Article  ADS  Google Scholar 

  16. Puri, R.R.: Mathematical Methods of Quantum Optics. Springer. Appendix A (2001)

  17. Fan, H.Y., Zaidi, H.R.: Application of IWOP technique to the generalized Weyl correspondence. Phys. Lett. A 124, 303–307 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dodonov, V.V.: Nonclassical states in quantum optics: a squeezed review of the first 75 years. J. Opt. B: Quantum Semiclassical Opt. 4, R1–R33 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hu, L.Y., Fan, H.Y.: Nonclassicality of photon-added squeezed vacuum and its decoherence in thermal environment. J. Mod. Opt. 57, 1344–1354 (2010)

    Article  ADS  MATH  Google Scholar 

  20. Hu, L.Y., Zhang, Z.M.: Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment. J. Opt. Soc. Am. B 29, 529–537 (2012)

    Article  ADS  Google Scholar 

  21. Hu, L.Y., Zhang, Z.M.: Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability. J. Opt. Soc. Am. B 30, 518–529 (2013)

    Article  ADS  Google Scholar 

  22. Marian, P., Marian, T.A.: Continuous-variable teleportation in the characteristic-function description. Phys. Rev. A 74, 042306 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 11447002, 11447202, and 11574295), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 16KJB140001 and 14KJD140001), the key project of Natural Science Foundation of the Changzhou Institute of Technology of China (Grant No. YN1630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng-Mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HM., Yuan, HC., Wan, ZL. et al. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States. Int J Theor Phys 57, 941–950 (2018). https://doi.org/10.1007/s10773-017-3626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3626-x

Keywords

Navigation