Skip to main content

Advertisement

Log in

Energy Levels, Radiative Rates, and Lifetimes for Transitions in Fe XIV

  • Published:
Journal of Applied Spectroscopy Aims and scope

Energy levels, transition rates, and lifetimes are reported for the low-lying 129 levels of Fe XIV, belonging to the n = 3 states (1s22s22p6)3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, 3s3d2, and 3p3d2. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation and quantum electrodynamic (QED) effects in multi-valence-electron systems. The calculated energy levels are in excellent agreement with the experimental results and the experimentally compiled energy values, of the National Institute for Standards and Technology wherever available. The calculated values including core–valence correlation are found to be in good agreement with other theoretical and experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Mewe, Astron. Astrophys., 59, 275–278 (1977).

    ADS  Google Scholar 

  2. B. C. Fawcett, At. Data Nucl. Data Tables, 28, 557–578 (1983).

    Article  ADS  Google Scholar 

  3. K. N. Huang, At. Data Nucl. Data Tables, 34, 1–77 (1986).

    Article  ADS  Google Scholar 

  4. C. Froese Fischer and B. Liu, At. Data Nucl. Data Tables, 34, 261–277 (1986).

    Article  ADS  Google Scholar 

  5. S. S. Liaw, Can. J. Phys., 70, 644–651 (1992).

    Article  ADS  Google Scholar 

  6. A. K. Bhatia and S. O. Kastner, J. Quant. Spectrosc. Radiat. Transfer, 49, 609–625 (1993).

    Article  ADS  Google Scholar 

  7. C. Lavin, A. B. Alvarez, and I. Martín, J. Quant. Spectrosc. Radiat. Transfer, 57, 831–845 (1997).

    Article  ADS  Google Scholar 

  8. P. Quinet, Phys. Scr., 61, 452–458 (2000).

    Article  ADS  Google Scholar 

  9. G. P. Gupta and A. Z. Msezane, J. Phys. B, 34, 4217–4230 (2000).

    Article  ADS  Google Scholar 

  10. M. J. Vilkas and Y. Ishikawa, Phys. Rev. A, 68, 012503 (2003).

    Article  ADS  Google Scholar 

  11. U. I. Safronova, M. Sataka, J. R. Albritton, W. R. Johnson, and M. S. Safronova, At. Data Nucl. Data Tables, 84, 1–83 (2003).

    Article  ADS  Google Scholar 

  12. C. Froese Fischer, G. Tachiev, and A. Irimia, At. Data Nucl. Data Tables, 92, 607–812 (2006).

    Article  ADS  Google Scholar 

  13. C. Z. Dong, T. Kato, S. Fritzsche, and F. Koike, Mon. Not. R. Astron. Soc., 369, 1735–1740 (2006).

    Article  ADS  Google Scholar 

  14. S. S. Tayal, Astrophys. J. Suppl. Ser., 178, 359–373 (2008).

    Article  ADS  Google Scholar 

  15. S. S. Tayal, At. Data Nucl. Data Tables, 97, 481–566 (2011).

    Article  ADS  Google Scholar 

  16. J. A. Santana, Y. Ishikawa, and E. Träbert, Phys. Scr., 79, 065301 (2009).

    Article  ADS  Google Scholar 

  17. L. H. Hao, G. Jiang, and H. J. Hou, Phys. Rev. A, 81, 022502 (2010).

    Article  ADS  Google Scholar 

  18. G. Y. Liang, N. R. Badnell, J. R. C. López-Urrutia, T. M. Baumann, G. Del Zanna, P. J. Storey, H. Tawara, and J. Ullrich, Astrophys. J. Suppl. Ser., 190, 322–333 (2010).

    Article  ADS  Google Scholar 

  19. N. R. Badnell, J. Phys. B, 19, 3827–3835 (1986).

    Article  ADS  Google Scholar 

  20. K. M. Aggarwal and F. P. Keenan, Mon. Not. R. Astron. Soc., 445, 2015–2027 (2014).

    Article  ADS  Google Scholar 

  21. G. Del Zanna, N. R. Badnell, L. Fernández-Menchero, G. Y. Liang, H. E. Mason, and P. J. Storey, Mon. Not. R. Astron. Soc., 454, 2909–2917 (2015).

    Article  ADS  Google Scholar 

  22. E. Träbert, Atoms, 2, 15–85 (2014).

    Article  ADS  Google Scholar 

  23. P. Jönsson, G. Gaigalas, J. Bieroń, C. F. Fischer, and I. P. Grant, Comput. Phys. Commun., 184, 2197–2203 (2013).

    Article  ADS  Google Scholar 

  24. F. Hu, J. M. Yang, C. K. Wang, L. F. Jing, S. B. Chen, G. Jiang, H. Liu, and L. H. Hao, Phys. Rev. A, 84, 042506 (2011).

    Article  ADS  Google Scholar 

  25. F. Hu, G. Jiang, J. M. Yang, C. K. Wang, X. F. Zhao, and L. H. Hao, Eur. Phys. J. D, 61, 15–20 (2011).

    Article  ADS  Google Scholar 

  26. I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules, Springer, New York (2007).

    Book  Google Scholar 

  27. NIST Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD.

  28. E. Träbert, P. H. Heckmann, R. Hutton, and I. Martinson, J. Opt. Soc. Am. B, 5, 2173–2181 (1987).

    Article  ADS  Google Scholar 

  29. E. Träbert, C. Wagner, P. H. Heckmann, G. Möller, and T. Brage, Phys. Scr., 48, 593–597 (1993).

    Article  ADS  Google Scholar 

  30. E. H. Pinnington, W. Ansbacher, A. Tauheed, E. Träbert, P. H. Heckmann, G. Möller, and J. H. Blanke, Z. Phys. D, 17, 5–9 (1990).

    Article  ADS  Google Scholar 

  31. J. Ekman, M. R. Godefroid, and H. Hartman, Atoms, 2, 215–224 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Hu.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, p. 682, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Sun, Y., Mei, M. et al. Energy Levels, Radiative Rates, and Lifetimes for Transitions in Fe XIV. J Appl Spectrosc 85, 749–759 (2018). https://doi.org/10.1007/s10812-018-0715-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0715-4

Keywords

Navigation