Skip to main content
Log in

Microstructure and microwave dielectric properties of BaNd2Ti4−xAl4x/3O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using the solid-state ceramic route, BaNd2Ti4−xAl4x/3O12 (0 ≤ x ≤ 0.15) ceramics were prepared, and the structure, microstructure, and microwave dielectric properties were investigated. The XRD results suggest the formation of single solid solution phase with orthorhombic structure for all studied compositions (0 ≤ x ≤ 0.15) and the unit cell volume decreases linearly with x. The SEM results also show no evidence of secondary phase. A small amount of substitutions improves quality factor (Q × f) and the temperature coefficient of resonant frequency (τ f ) but leads to a decrease of the permittivity. The τ f value is found to decrease with increasing substitutions because of the declination of tolerance factor (t). And the τ f can be adjusted from 79.5 to 38.3 ppm/°C with increment of substitutions. Finally, excellent dielectric properties are achieved as x = 0.1 sintered at 1320 °C for 4 h in air: εr = 86.1, Q × f = 9702 GHz, τ f  = 43.1 ppm/°C. The Q × f value is strongly affected by the annealing process. The samples annealed at 1100 °C for 15 h exhibit the best microwave dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communications (Elseiver Publishers, UK, 2008)

    Google Scholar 

  2. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Google Scholar 

  3. G.-H. Chen, J.-C. Di, H.-R. Xu, M.-H. Jiang, C.-L. Yuan, J. Am. Ceram. Soc. 95, 1394–1397 (2012)

    Article  Google Scholar 

  4. M. Mirsaneh, O.P. Leisten, B. Zalinska, I.M. Reaney, Adv. Funct. Mater. 18, 2293–2300 (2008)

    Article  Google Scholar 

  5. T. Negas, G. Yeager, S. Bell, D. Amren, in Chemistry of Electronic Ceramic Materials, vol. 804, ed. by P.K. Davis, R.S. Roth (NIST Spec. Pub, USA, 1991), p. 21

    Google Scholar 

  6. R. Ratheesh, H. Sreemoolanadhan, M.T. Sebastain, P. Mohanan, Ferroelectrics 211, 1 (1998)

    Article  Google Scholar 

  7. D. Suvorov, J.R. Awn Claudia, M. Valant, Jpn. J. Appl. Phys. 38, 2820–2826 (1999)

    Article  Google Scholar 

  8. Y.-J. Wu, X.-M. Chen, J. Am. Ceram. Soc. 83, 1837–1839 (2000)

    Article  Google Scholar 

  9. X. Zhao, Y. Zheng, W. Lei, S. Wang, Mater. Lett. 60, 459–463 (2006)

    Article  Google Scholar 

  10. M. Valant, D. Suvorov, D. Kolar, J. Mater. Sci. 32, 6483–6488 (1997)

    Article  Google Scholar 

  11. N. Qin, X.M. Chen, Mate. Sci. Eng. B. 111, 90–94 (2004)

    Article  Google Scholar 

  12. H. Chen, B. Tang, Z. Xiong, Y. Li, S. Zhang, Appl. Phys. A 121, 283–287 (2015)

    Article  Google Scholar 

  13. J. Qu, F. Liu, C. Yuan, X. Liu, G. Chen, Mater. Lett. 159, 436–438 (2015)

    Article  Google Scholar 

  14. X. Yao, H. Lin, X. Zhao, W. Chen, L. Luo, Ceram. Int. 38, 6723–6728 (2012)

    Article  Google Scholar 

  15. J. Qu, F. Liu, C. Yuan, X. Liu, G. Chen, Mater. Sci. Eng. B 191, 15–20 (2015)

    Article  Google Scholar 

  16. S. Kume, M. Yasuoka, N. Omura, K. Watari, J. Eur. Ceram. Soc. 26, 1831–1834 (2006)

    Article  Google Scholar 

  17. S.K. Thatikonda, D. Goswami, P. Dobbidi, Ceram. Int. 40, 1125–1131 (2014)

    Article  Google Scholar 

  18. B.W. Hakki, P.D. Coleman, IRE Trans. Microw. Theory Technol. 8, 402 (1960)

    Article  Google Scholar 

  19. W.E. Courtney, Trans. IRE Microw. Theory Technol. 18, 476 (1970)

    Article  Google Scholar 

  20. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka, Y. Ishikawa, I.E.E.E.M.T.T.-S. Int, Microw. Symp. Dig. 3, 277–280 (1987)

    Google Scholar 

  21. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  22. H. Lin, X. Yao, W. Chen, L. Luo, Ceram. Int. 38, 3011–3016 (2012)

    Article  Google Scholar 

  23. R.D. Shannon, J. Appl. Phys. 73, 348–366 (1993)

    Article  Google Scholar 

  24. M. Guo, G. Dou, S. Gong, D. Zhou, J. Eur. Ceram. Soc. 32, 883–890 (2012)

    Article  Google Scholar 

  25. B.D. Silverman, Phys. Rev. 125, 1921 (1962)

    Article  Google Scholar 

  26. C.-S. Hsu, C.-L. Huang, R.-J. Lin, Mater. Res. Bull. 31, 1985–1993 (2001)

    Google Scholar 

  27. X. Wang, A. Templeton, S. Penn, S.J. Webb, L.F. Cohen, N. McN Alford, J. Am. Ceram. Soc. 83, 95–100 (2000)

    Article  Google Scholar 

  28. D. Zhou, W.G. Qu, C.A. Randall, L.X. Pang, H. Wang, X.G. Wu, J. Guo, G.Q. Zhang, L. Shui, Q.P. Wang, H.C. Liu, X. Yao, Acta Mater. 59, 1502–1509 (2011)

    Article  Google Scholar 

  29. N. McN Alford, S.J. Perm, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Google Scholar 

  30. X. Guo, B. Tang, J. Liu, H. Chen, S. Zhang, J. Alloys Compd. 646, 512–516 (2015)

    Article  Google Scholar 

  31. X.M. Chen, Y. Li, N. Qin, Y.W. Zeng, J. Am. Ceram. Soc. 88, 481–484 (2005)

    Google Scholar 

  32. H. Sreemoolanathanb, L. Abdul Khalama, R. Ratheeshc, P. Mohanand, M.T. Sebastian, Mater. Sci. Eng. B 107, 264–270 (2004)

    Article  Google Scholar 

  33. H. Taghipour Armaki, E. Taheri-Nassaj, M. Bari, J. Alloys. Compd. 581, 757–761 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research funds of The Guangxi Key Laboratory of Information Materials (No. 131004-Z) and the Research funds of Guangxi Experiment Center of Information Science (No. 20130115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.S., Chen, G.H., Kang, X.L. et al. Microstructure and microwave dielectric properties of BaNd2Ti4−xAl4x/3O12 ceramics. J Mater Sci: Mater Electron 27, 8234–8241 (2016). https://doi.org/10.1007/s10854-016-4829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4829-2

Keywords

Navigation