Skip to main content
Log in

Determination of vaporization enthalpy for ionic liquids [Cnmim][Lact] (n = 2, 3, 5) and applications of the molar surface Gibbs free energy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lactic acid ionic liquids 1-alkyl-3-methylimidazolium [Cnmim][Lact] (n = 2, 3, 5) were prepared and confirmed. The enthalpy of vaporization, \( \Delta _{\text{l}}^{\text{g}} H_{\text{m}}^{\text{o}} \left( {T_{\text{av}} } \right) \), at the average temperature, T av, for the three ILs was determined using isothermogravimetrical analysis, and in terms of \( \Delta _{\text{l}}^{\text{g}} C_{\text{p,m}}^{\text{o}} \), the value of \( \Delta _{\text{l}}^{\text{g}} H_{\text{m}}^{\text{o}} \left( {T_{\text{av}} } \right) \) can be transformed into \( \Delta _{\text{l}}^{\text{g}} H_{\text{m}}^{\text{o}} \left( {298} \right) \); then, according to the scale of polarity, δ μ, the polarity of the three ILs was estimated, in which the order of the polarity is in accordance with our experiences. Moreover, a new thermodynamic quantity—molar surface Gibbs free energy, g s—is derived from the improved Tong’s vaporization enthalpy model. In terms of g s, the traditional Eötvös equation was improved to be a new Eötvös one, in which the parameters have clear physical meanings: Its slope is molar surface entropy, s, and the intercept is the molar surface enthalpy, h. In addition, combining g s with Lorentz–Lorenz equation, an expression for predicting surface tension of the ILs was obtained, and the predicted values of surface tension are in good agreement with the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sattari M, Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH, Ramjugernath D. Development of a group contribution method for the estimation of heat capacities of ionic liquids. J Therm Anal Calorim. 2014;115:1863–82.

    Article  CAS  Google Scholar 

  2. Mousavisafavi SM, Mirkhani SA, Gharagheizi F, Akbari J. A predictive quantitative structure–property relationship for glass transition temperature of 1,3-dialkyl imidazolium ionic liquids. J Therm Anal Calorim. 2013;111:235–46.

    Article  CAS  Google Scholar 

  3. Usula M, Plechkova NV, Piras A, Porcedda S. Ethylammonium alkanoate-based ionic liquid + water mixtures. A calorimetric and volumetric study at 298.15 K. J Therm Anal Calorim. 2015;121:1129–37.

    Article  CAS  Google Scholar 

  4. Hong M, Liu RJ, Yang HX, Guan W, Tong J, Yang JZ. Determination of the vaporisation enthalpies and estimation of the polarity for 1-alkyl-3-methylimidazolium propionate [Cnmim][Pro](n = 2, 3) ionic liquids. J Chem Thermodyn. 2014;70:214–8.

    Article  CAS  Google Scholar 

  5. Wei J, Bu XX, Guan W, Xing NN, Fang DW, Wu Y. Measurement of vaporization enthalpy by isothermogravimetrical method and prediction of the polarity for 1-alkyl-3-methylimidazolium acetate {[C n mim][OAc] (n = 4, 6)} ionic liquids. RSC Adv. 2015;5:70333–8.

    Article  CAS  Google Scholar 

  6. Earle MJ, Esperança JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA. The distillation and volatility of ionic liquids. Nature. 2006;439:831–4.

    Article  CAS  Google Scholar 

  7. Deyko A, Lovelock KRJ, Corfield JA, Taylor AW, Gooden PN, Villar-Garcia IJ, Licence P, Jones RG, Krasovskiy VG, Chernikova EA, Kustov LM. Measuring and predicting ∆ gl H om 298 values of ionic liquids. Phys Chem Chem Phys. 2009;11:8544–55.

    Article  CAS  Google Scholar 

  8. Esperança JMSS, Lopes JNC, Tariq M, Santos LMNBF, Magee JW, Rebelo LPN. Volatility of aprotic ionic liquids: a review. J Chem Eng Data. 2010;55:3–12.

    Article  Google Scholar 

  9. Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Chem Phys A. 2006;110:7303–6.

    Article  CAS  Google Scholar 

  10. Rocha MAA, Lima CFRAC, Gomes LR, Schröder B, Coutinho JAP, Marrucho IM, Esperanca JMSS, Rebelo LPN, Shimizu K, Lopes JNC, Santos LMNBF. High-accuracy vapor pressure data of the extended [CnC1im][Ntf2] ionic liquid series: trend changes and structural shifts. J Phys Chem B. 2011;115:10919–26.

    Article  CAS  Google Scholar 

  11. Verevkin SP, Emel’yanenko VN, Zaitsau DH, Heintz A, Muzny CD, Frenkel ML. Thermochemistry of imidazolium-based ionic liquids: experiment and first-principles calculations. Phys Chem Chem Phys. 2010;12:14994–5000.

    Article  CAS  Google Scholar 

  12. Armstrong JP, Hurst C, Jones RG, Licence P, Lovelock KRJ, Satterley CJ, Villar-Garcia IJ. Vapourisation of ionic liquids. Phys Chem Chem Phys. 2007;9:982–90.

    Article  CAS  Google Scholar 

  13. Emel’yanenko VN, Verevkin SP, Heintz A, Corfield JA, Deyko A, Lovelock KRJ, Licence P, Jones RG. Pyrrolidinium based ionic liquids 1-butyl-1-methyl pyrrolidinium dicyanoamide: thermochemical measurement, mass spectrometry and ab initio calculations. J Phys Chem B. 2008;112:11734–42.

    Article  Google Scholar 

  14. Wang C, Luo H, Li H, Dai S. Direct UV-spectroscopic measurement of selected ionic-liquid vapors. Phys Chem Chem Phys. 2010;12:7246–50.

    Article  CAS  Google Scholar 

  15. Verevkin SP, Zaitsau DH, Emel’yanenko VN, Yermalayeu AV. Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data. J Phys Chem B. 2013;117:6473–86.

    Article  CAS  Google Scholar 

  16. Tong J, Yang HX, Liu RJ, Xia XL, Yang JZ. Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-alkyl-3-methylimidazolium propionate [C n mim][Pro](n = 4, 5, 6). J Phys Chem B. 2014;118:12972–8.

    Article  CAS  Google Scholar 

  17. Luo H, Baker GA, Dai S. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Chem Phys B. 2008;112:10077–81.

    Article  CAS  Google Scholar 

  18. Verevkin SP, Ralys RV, Zaitsau DH, Emel’yanenko VN, Schick C. Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim Acta. 2012;238:55–62.

    Article  Google Scholar 

  19. Zhang ZH, Wei J, Ma XX, Xu WG, Tong J, Guan W, Yang JZ. The measurement of vapor pressure, enthalpy of vaporization and the prediction of the polarity for 1-propyl-3-methylimidazolium acetate [C3mim][OAc] ionic liquid. Sci China Chem. 2014;44:1005–13.

    CAS  Google Scholar 

  20. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.

    Article  CAS  Google Scholar 

  21. Stewart LN. In: McAdie HG, editor. Proceedings of the third toronto symposium on thermal analysis. Toronto: Chemical Institute of Canada; 1969. p. 205.

  22. Hinks D, Rafiq MI, Price DM, Montero GA, Smith B. A comparison of vapour pressure measurements of quinizarin and leucoquinizarin via transpiration and thermogravimetry. Color Technol. 2003;119:84–90.

    Article  CAS  Google Scholar 

  23. Wright SF, Dollimore D, Dunn JG, Alexander K. Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis. Thermochim Acta. 2004;421:25–30.

    Article  CAS  Google Scholar 

  24. Price DM. Vapor pressure determination by thermogravimetry. Thermochim Acta. 2001;367–368:253–62.

    Article  Google Scholar 

  25. Price DM, Hawkins M. Vapour pressures of hydroxybenzophenone UV absorbers. Thermochim Acta. 1999;329:73–6.

    Article  CAS  Google Scholar 

  26. Verevkin SP, Zaitsau DH, Emel’yanenko VN, Ralys RV, Yermalayeu AV, Schick C. Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids. Thermochim Acta. 2013;562:84–95.

    Article  CAS  Google Scholar 

  27. Paulechka YU, Zaitsau DH, Kabo GJ, Strechan AA. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Thermochim Acta. 2005;439:158–60.

    Article  CAS  Google Scholar 

  28. Zaitsau DH, Yernalayeu AV, Emel’yanenko VN, Verevkin SP, Welz-Biermann U, Schubert T. Structure–property relationships in ILs: a study of the alkyl chain length dependence in vaporisation enthalpies of pyridinium based ionic liquids. Sci China Chem. 2012;55:1525–31.

    Article  CAS  Google Scholar 

  29. Fang DW, Tong T, Guan W, Yang JZ. Prediction of thermodynamic properties of lactate ionic liquids [Cnmim][Lact](n = 2, 3, 4, 5, 6) by parachor. Sci China Chem. 2010;40:1339–47.

    Google Scholar 

  30. Hildebrand JH, Scott RL. The solubility of nonelectrolytes. 3rd ed. New York: Reinhold; 1950.

    Google Scholar 

  31. Lawson DD, Ingham JD. Estimation of solubility parameters from refractive index data. Nature. 1969;223:614–5.

    Article  CAS  Google Scholar 

  32. Schröder B, Coutinho JAP. Predicting enthalpies of vaporization of aprotic ionic liquids with COSMO-RS. Fluid Phase Equilib. 2014;370:24–33.

    Article  Google Scholar 

  33. Adamson AW. Physical chemistry of surfaces, 3rd edn. New York: Wiley; 1976; translated by Gu TR, Beijing: Science Press; 1986.

  34. Hong M, Sun A, Yang Q, Guan W, Tong J, Yang JZ. Studies on properties of ionic liquids 1-alkyl-3-methylimidazolium lactate at temperatures from 288.15 to 333.15 K. J Chem Thermodyn. 2013;67:91–8.

    Article  CAS  Google Scholar 

  35. Rebelo LPN, Lopes JNC, Esperança JMSS, Filipe E. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J Phys Chem B. 2005;109:6040–3.

    Article  CAS  Google Scholar 

  36. Mountain BW, Seward TM. Hydrosulfide/sulfide complexes of copper(I): experimental confirmation of the stoichiometry and stability of Cu(HS)2− to elevated temperatures. Geochim Cosmochim Acta. 2003;67:3005–14.

    Article  CAS  Google Scholar 

  37. Xu WG, Li L, Ma XX, Wei J, Duan WB, Guan W, Yang JZ. Density, surface tension, and refractive index of ionic liquids homologue of 1-alkyl-3-methylimidazolium tetrafluoroborate [C n mim][BF4] (n = 2,3,4,5,6). J Chem Eng Data. 2012;57:2177–84.

    Article  CAS  Google Scholar 

  38. Ma XX, Wei J, Zhang QB, Tian F, Feng YY, Guan W. Prediction of thermophysical properties of acetate-based ionic liquids using semiempirical methods. Ind Eng Chem Res. 2013;52:9490–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by NSFC (21173107) and LNET (LR2015025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 748 kb)

Supplementary material 2 (DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Li, Z., Gu, C. et al. Determination of vaporization enthalpy for ionic liquids [Cnmim][Lact] (n = 2, 3, 5) and applications of the molar surface Gibbs free energy. J Therm Anal Calorim 125, 547–556 (2016). https://doi.org/10.1007/s10973-016-5318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5318-9

Keywords

Navigation