Skip to main content
Log in

Molecular cloning, expression analysis and subcellular localization of LEAFY in carrot (Daucus carota L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

FLO/LEAFY (LFY) genes in the FLO_LFY superfamily are important factors regulating plant transition from inflorescence to floral meristems. In this study, we cloned a full-length LFY cDNA from leaves of carrot (Daucus carota L.). The sequenced gene, designated as DcLFY (GenBank accession number KU297945), comprised 1368 with a 1176-bp open reading frame. The deduced encoded protein, which contained 391 amino acid residues and possessed typical N- and C-domains, shared 67.82 % similarity with LFY of Ziziphus jujube. Quantitative real-time PCR analysis revealed that the relative expression of DcLFY in carrot was the highest in inflorescences and gradually decreased with the growth of the inflorescence during flowering. Expression of green fluorescent protein-fused DcLFY in onion (Allium cepa L.) epidermal cells was localized in nuclei. These results demonstrate that DcLFY is a putative FLO/LFY homolog related to the flowering pathway. Taken together, our data suggest that DcLFY is a crucial transcription factor in floral initiation and floral development in carrot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16(11):3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DJ, Botella JR (2007) Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein beta-subunit AGB1. Plant Cell Rep 26(9):1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Blázquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124(19):3835–3844

    PubMed  Google Scholar 

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285(5427):585–587

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, HuggettJ Kubista M, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Chen X (2004) Cloning and activity analysis of in vitro expression of plant nad-idh genes. Chin Sci Bull 49(4):328–336

    Article  CAS  Google Scholar 

  • Chuong SD, Park NI, Freeman MC, Mullen RT, Muench DG (2005) The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells. BMC Cell Biol 6(1):1–13

    Article  Google Scholar 

  • Coen ES, Romero J, Doyle S et al (1991) floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell 63(6):1311–1322

    Article  Google Scholar 

  • Frohlich MW, Parker DS (2009) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot 25(2):155–170

    Article  Google Scholar 

  • Gao JS, Wu N, Shen ZL et al (2016) Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.). Gene 576:763–769

    Article  CAS  PubMed  Google Scholar 

  • Gocal GF, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125(4):1788–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada JJ (2001) Role of arabidopsis leafy cotyledon genes in seed development. J Plant Physiol 158(4):405–409

    Article  CAS  Google Scholar 

  • Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7(9):1501–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jofuku KD, den Boer BG, Van MM, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9):1211–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267(5197):522–525

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Han MS, ChoHW Kim D S, Kim HJ, Kim BD (2008) Molecular cloning of the CaLFY, putative pepper ortholog of FLO/LFY. Mol Breed 22(3):443–453

    Article  CAS  Google Scholar 

  • Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA 95(5):1979–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Fan SL, Song MZ, Pang CY, Wei HL, Li W, Yu SX (2013) Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L. Plant Cell Rep 32(11):1675–1686

    Article  CAS  PubMed  Google Scholar 

  • Li GY, Yang CJ, Liu GJ (2015) Cloning and expression pattern analysis of BkGRAS2 from Betula kirghisorum. Genet Mol Res 14(3):11335–11347

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MA, Lo R, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93(7):1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Ma YP, Wei JX, Yu ZY, Dai SL, Wang YZ (2014) Genetic diversity of LEAFY homologues in Chrysanthemum argyrophyllum L. Biochem Syst Ecol 55:14–19

    Article  CAS  Google Scholar 

  • Maizel A, Busch MA, Tanahashi T (2005) The floral regulator LEAFY evolves by substitutions in the DNA bliding domain. Science 308:260–263

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360(6401):273–277

    Article  CAS  PubMed  Google Scholar 

  • Molinero RN, Jamilena M, Zurita S (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J 20:685–693

    Article  Google Scholar 

  • Park NI, Muench DG (2007) Biochemical and cellular characterization of the plant ortholog of PYM, a protein that interacts with the exon junction complex core proteins Mago and Y14. Planta 225(3):625–639

    Article  CAS  PubMed  Google Scholar 

  • Park NI, Hui X, Arasu MV (2015) Subcellular localization studies of three phenylalanine ammonia-lyases and cinnamate 4-hydroxylase from Scutellaria Baicalensis Using GFP fusion proteins. Online J Biol Sci 15(2):70–73

    Article  CAS  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L (2001) Constitutive expression of Arabidopsis leafy or apetala1 genes in citrus reduces their generation time. Nat Biotechnol 19(3):263–267

    Article  CAS  PubMed  Google Scholar 

  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques 26(6):1125–1132

    CAS  PubMed  Google Scholar 

  • ShiokawaT Yamada S, Futamura N, Osanai K, Murasugi D, Shinohara K et al (2008) Isolation and functional analysis of the cjndly gene, a homolog in cryptomeria japonica of floricaula/leafy genes. Tree Physiol 28(1):21–28

    Article  Google Scholar 

  • Souer E, Van-Der-Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125(4):733–742

    CAS  PubMed  Google Scholar 

  • Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu X, Dennis ES (1998) Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol 37(6):897–910

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Jiang Q, Wang F, Wang GL, Xu ZS, Xiong AS (2015) Selection of suitable reference genes for qpcr normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS One 10(2):e0117569. doi:10.1371/journal.pone.0117569

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada M, Cao QF, Kotoda N, Soejima JI, Masuda T (2002) Apple has two orthologues of FORICAULA/LEAFY involved in flowering. Plant Mol Biol 49(6):567–577

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377(377):495–500

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69(5):843–859

    Article  CAS  PubMed  Google Scholar 

  • William DA, Yanhui S, Smith MR, Meina L, Baldwin DA, Doris W (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA 101(6):775–1780

    Article  Google Scholar 

  • Zhang JX, Wu KL, Zeng SJ et al (2010) Characterization and expression analysis of PhalLFY, a homologue in Phalaenopsis of FLORICAULA/LEAFY genes. Sci Hortic 124(4):482–489

    Article  CAS  Google Scholar 

  • Zhang T, Chao Y, Kang J, Ding W, Yang Q (2013) Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.). Mol Biol Rep 40(7):597–4603

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Key Technology Research and Development Program of China (2012BAD01B00, 2012BAD50G01 and 2014BAD01B08). Our research was also supported by the Technological Innovation Capacity Program of the Beijing Academy of Agricultural and Forestry Sciences (KJCX20150111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments comply with the current laws of China.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2016_510_MOESM1_ESM.tif

Fig. S1 Schematic diagram of the DcLFY domain. Prediction of the gene domain using the CDD software (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). (TIFF 65 kb)

Supplementary material 2 (XLS 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, H., Zhan, Z. et al. Molecular cloning, expression analysis and subcellular localization of LEAFY in carrot (Daucus carota L.). Mol Breeding 36, 89 (2016). https://doi.org/10.1007/s11032-016-0510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0510-y

Keywords

Navigation