Skip to main content

Advertisement

Log in

Dynamic evolution of a hydraulic–mechanical–electric system with randomly fluctuating speed

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The generator speed is an important index in maintaining the stable connection between the hydraulic turbine and the electric power system. Historically, researches carried out are based on deterministic models. It is therefore a challenge to investigate the effects of random fluctuating speed on the dynamic evaluation of the hydraulic–mechanical–electric system as variable renewable generation sources link to the electric power system. Here, we proposed a probabilistic model and solved it by the Chebyshev polynomial approximation method. We also made a careful comparison implemented by the deterministic and the probabilistic models. Finally, we showed how the random excitations affect the dynamic evaluation of the system output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qin, C., Innes-Wimsatt, E., Loth, E.: Hydraulic-electric hybrid wind turbines: tower mass saving and energy storage capacity. Renew. Energy 99, 69–79 (2016)

    Article  Google Scholar 

  2. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294 (2012)

    Article  Google Scholar 

  3. Amirante, R., Cassone, E., Distaso, E., Tamburrano, P.: Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 132, 372–87 (2017)

    Article  Google Scholar 

  4. Simeons, C.: Hydro-Power-The Use of Water as an Alternative Source of Energy. Pergamon Press, Oxford (1980)

    Google Scholar 

  5. Shan, B.G., Tan, X.D., Wen, Q., Han, X.Y.: Analysis and prediction of China’s electricity demand and supply in 2013. Electr. Power 46(8), 7–10 (2013)

    Google Scholar 

  6. Balkhair, K.S., Rahman, K.U.: Sustainable and economical small-scale and low-head hydropower generation: a promising alternative potential solution for energy generation at local and regional scale. Appl. Energy 188, 378–391 (2017)

    Article  Google Scholar 

  7. Qian, J., Zeng, Y., Guo, Y.K., Zhang, L.X.: Reconstruction of the complete characteristics of the hydro turbine based on inner energy loss. Nonlinear Dyn. 86(2), 963–974 (2016)

    Article  Google Scholar 

  8. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mesnage, H., Alamir, M., Perrissin-Fabert, N., et al.: Nonlinear model-based control for minimum-time start of hydraulic turbines. Eur. J. Control 34, 24–30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hydraulic turbine regulating system with uncertainties using three different approaches. IEEE T. Power Syst. 32(5), 3482–3491 (2017)

  11. Xu, B.B., Chen, D.Y., Zhang, H., Zhou, R.: Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit. Nonlinear Dyn. 81(3), 1263–1274 (2015)

    Article  Google Scholar 

  12. Liu, X., Liu, C.: Eigenanalysis of oscillatory instability of a hydropower plant including water conduit dynamics. IEEE Trans. Power Syst. 22(2), 675–681 (2007)

    Article  Google Scholar 

  13. Bergant, A., Simpson, A.R., Tijsseling, A.S.: Water hammer with column separation: a historical review. J. Fluid. Struct. 22(2), 135–171 (2006)

    Article  Google Scholar 

  14. Kavurmaci, B., Celebioglu, K., Aradag, S., et al.: Model Testing of Francis-Type Hydraulic Turbines. Meas. Control UK 50(3), 70–73 (2017)

    Article  Google Scholar 

  15. Demello, F.P., Koessler, R.J., Agee, J., Anderson, P.M., Doudna, J.H., Fish, J.H., Hamm, P.A.L., Kundur, P., Lee, D.C., Rogers, G.J., Taylor, C.: Hydraulic-turbine and turbine control-models for system dynamic studies. IEEE Trans. Power Syst. 7(1), 167–179 (1992)

    Google Scholar 

  16. Baloch, M.H., Wang, J., Kaloi, G.S.: Stability and nonlinear controller analysis of wind energy conversion system with random wind speed. Int. J. Electr. Power 79, 75–83 (2016)

    Article  Google Scholar 

  17. Kaloi, G.S., Wang, J., Baloch, M.H.: Dynamic modeling and control of DFIG for wind energy conversion system using feedback linearization. J. Electr. Eng. Technol. 11(5), 1137–1146 (2016)

    Article  Google Scholar 

  18. Xu, B., Wang, F., Chen, D.Y., Zhang, H.: Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load. Energy Convers. Manag. 108, 478–487 (2016)

    Article  Google Scholar 

  19. Afshar, M.H., Rohani, M., Taheri, R.: Simulation of transient flow in pipeline systems due to load rejection and load acceptance by hydroelectric power plants. Int. J. Mech. Sci. 52(1), 103–115 (2010)

    Article  Google Scholar 

  20. Chen, J., Yang, H.X., Liu, C.P., Lau, C.H., Lo, M.: A novel vertical axis water turbine for power generation from water pipelines. Energy 54(2), 184–193 (2013)

    Article  Google Scholar 

  21. Zhang, H., Chen, D., Xu, B., Wu, C.Z., Wang, X.Y.: The slow-fast dynamical behaviors of a hydro-turbine governing system under periodic excitations. Nonlinear Dyn. 87(4), 2519–2528 (2017)

    Article  Google Scholar 

  22. Li, H., Chen, D., Zhang, H., Wu, C., Wang, X.: Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing. Appl. Energy 185, 244–253 (2017)

    Article  Google Scholar 

  23. Liang, J., Yuan, X., Yuan, Y., Chen, Z., Li, Y.: Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank. Mech. Syst. Signal. Proc. 85, 927–946 (2017)

    Article  Google Scholar 

  24. Nagode, K., Škrjanc, I.: Modelling and internal fuzzy model power control of a Francis water turbine. Energies 7(2), 874–889 (2014)

    Article  Google Scholar 

  25. Shariatkhah, M.H., Haghifam, M.R., Chicco, G., Parsa-Moghaddam, M.: Modelling the operation strategies of storages and hydro resources in adequacy analysis of power systems in presence of wind farms. IET Renew. Power Gener. 10(8), 1059–1068 (2016)

    Article  Google Scholar 

  26. Xu, B., Chen, D., Tolo, S., Patelli, E., Jiang, Y.L.: Model validation and stochastic stability of a hydro-turbine governing system under hydraulic excitations. Int. J. Electr. Power 95, 156–165 (2018)

    Article  Google Scholar 

  27. Wu, Q., Zhang, L., Ma, Z.: A model establishment and numerical simulation of dynamic coupled hydraulic–mechanical–electric-structural system for hydropower station. Nonlinear Dyn. 87(1), 1–16 (2016)

    Google Scholar 

  28. Al-Sharafi, A., Sahin, A.Z., Ayar, T., Yilbas, B.S.: Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 69, 33–49 (2017)

    Article  Google Scholar 

  29. Aly, H.H.H.: Dynamic modeling and control of the tidal current turbine using DFIG and DDPMSG for power system stability analysis. Int. J. Electr. Power 83, 525–540 (2016)

    Article  Google Scholar 

  30. Riasi, A., Tazraei, P.: Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves. Renew. Energy 107, 138–146 (2017)

    Article  Google Scholar 

  31. Henriques, T.A.D.J., Hedges, T.S., Owen, I., Poole, R.J.: The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave-current interaction. Energy 102, 166–175 (2016)

    Article  Google Scholar 

  32. Kalogirou, S.A., Karellas, S., Badescu, V., Braimakis, K.: Exergy analysis on solar thermal systems: a better understanding of their sustainability. Renew. Energy 85, 1328–1333 (2016)

    Article  Google Scholar 

  33. Vaezi, M., Deldar, M., Izadian, A.: Hydraulic wind power plants: a nonlinear model of low wind speed operation. IEEE Trans. Control Syst. Technol. 24(5), 1–9 (2016)

    Article  Google Scholar 

  34. Shi, R.J., Fan, X.C., He, Y.: Comprehensive evaluation index system for wind power utilization levels in wind farms in China. Renew. Sustain. Energy Rev. 69, 461–471 (2017)

    Article  Google Scholar 

  35. Luongo, A., D’Annibale, F.: Nonlinear hysteretic damping effects on the post-critical behaviour of the visco-elastic Beck’s beam. Math. Mech. Solids 6, 1347–1365 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tazraei, P., Riasi, A.: Quasi-two-dimensional numerical analysis of fast transient flows considering non-newtonian effects. J. Fluids Eng. Trans. ASME 138(1), 011203 (2016). https://doi.org/10.1115/1.4031093

    Article  Google Scholar 

  37. Trivedi, C., Gandhi, B.K., Cervantes, M.J., Dahlhaug, O.G.: Experimental investigations of a model Francis turbine during shutdown at synchronous speed. Renew. Energy 83, 828–836 (2015)

    Article  Google Scholar 

  38. Thiery, F., Gustavsson, R., Aidanpää, J.O.: Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts. Int. J. Mech. Sci. 99, 251–261 (2015)

    Article  Google Scholar 

  39. Xu, W.: Numerical Analysis Methods for Stochastic Dynamical System. Science Press, Beijing (2013)

    Google Scholar 

  40. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 2(1), 112–118 (1993)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the scientific research foundation of National Natural Science Foundation–Outstanding Youth Foundation (51622906), National Natural Science Foundation (51479173), Fundamental Research Funds for the Central Universities (201304030577), Scientific research funds of Northwest A&F University (2013BSJJ095), Science Fund for Excellent Young Scholars from Northwest A&F University and Shaanxi Nova program (2016KJXX-55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diyi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Chen, D., Gao, X. et al. Dynamic evolution of a hydraulic–mechanical–electric system with randomly fluctuating speed. Nonlinear Dyn 92, 1801–1813 (2018). https://doi.org/10.1007/s11071-018-4163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4163-8

Keywords

Navigation