Skip to main content

Advertisement

Log in

N-doped TiO2 applied in low-temperature-based dye-sensitized solar cells

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

With urea as nitrogen source, N-doped TiO2 powders were synthesized and fabricated for low-temperature dye-sensitized solar cells (DSSCs) by the method of doctor-blade, and the highest temperature of the whole process was 120 °C. SEM, TEM, XRD, DRS, and XPS were used to analyze the microstructure of the N-doped TiO2 powders. EIS, Bode plot, UV–Vis and IV were employed to measure the photovoltaic performance of the DSSCs. The maximum photoelectric conversion efficiency (η) was 5.18 % when the amount of the doped nitrogen was 4 %, and, when compared with the η of 4.22 % for pure TiO2, the short circuit current was increased by 22.2 % and the efficiency was increased by 22.7 %. It has been shown that the doped nitrogen could effectively suppress TiO2 crystal phase transition from anatase to rutile, and decrease the size of particles. Therefore, the increased photoelectric conversion efficiency of the N-doped TiO2-based DSSC was ascribed to the more suitable crystal phase, sizes and inner structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660–1667 (2013)

    Article  CAS  Google Scholar 

  2. N. Mir, M. Salavati-Niasari, Mater. Sci. Semicond. Process. 27, 702–710 (2014)

    Article  CAS  Google Scholar 

  3. T. Gholami, N. Mir, M. Masjedi-Arani, E. Noori, M. Salavati-Niasari, Mater. Sci. Semicond. Process. 22, 101–108 (2014)

    Article  CAS  Google Scholar 

  4. N.A. Dahoudi, Q.F. Zhang, G.Z. Cao, J. Renew. Energy. 1155, 545212–545220 (2013)

    Google Scholar 

  5. J.Z. Chen, J.Q. Luo, X.H. Jin, Y.Q. Liu, J. Sun, L. Gao, Electrochim. Acta 100, 85–92 (2013)

    Article  CAS  Google Scholar 

  6. M. Hocˇevar, U.O. Krasˇovec, M. Topic, J. Sol-Gel. Sci. Technol. 68, 67–74 (2013)

    Article  Google Scholar 

  7. S. Ito, N. Ha, G. Rothenberger, P. Liska, P. Comte, S. Zakeeruddin, P. Péchy, M. Nazeeruddin, M. Grätzel, Chem. Commun. 38, 4004–4006 (2006)

    Article  Google Scholar 

  8. F. Shao, J. Sun, L. Gao, J.Z. Chen, S.W. Yang, RSC Adv. 4, 7805–7810 (2014)

    Article  CAS  Google Scholar 

  9. F. Pichot, J.R. Pitts, B.A. Gregg, Langmuir 16, 5626–5630 (2000)

    Article  CAS  Google Scholar 

  10. D.S. Zhang, T. Yoshida, T. Ekermann, K. Furuta, H. Minoura, Adv. Funct. Mater. 16, 1228–1234 (2006)

    Article  CAS  Google Scholar 

  11. M. Dürr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Nat. Mater. 4, 607–611 (2005)

    Article  Google Scholar 

  12. T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Sol. Energy Mater. Sol. C 94, 812–816 (2010)

    Article  CAS  Google Scholar 

  13. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole, Nano Lett. 3, 1049–1051 (2003)

    Article  CAS  Google Scholar 

  14. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001)

    Article  CAS  Google Scholar 

  15. W. Qin, S.T. Lu, X.H. Wu, S. Wang, Int. J. Electrochem. Sci. 8, 7984–7990 (2013)

    CAS  Google Scholar 

  16. C.W. Hsu, P. Chen, J.M. Ting, J. Electrochem. Soc. 160, H160–H165 (2013)

    Article  CAS  Google Scholar 

  17. X.T. Zhang, G.W. Zhou, G.W. Bai, Chan Pulp Pap. 29, 28–31 (2010)

    Google Scholar 

  18. P. Zhang, C.C. Wu, Y.S. Han, T. Jin, B. Chi, J. Pu, L. Jian, J. Am. Ceram. Soc. 95, 1372–1377 (2012)

    Article  CAS  Google Scholar 

  19. W. Guo, Y.H. Shen, T.L. Ma, Electrochim. Acta 56, 4611–4617 (2011)

    Article  CAS  Google Scholar 

  20. S.H. Kang, H.S. Kim, J. Kim, Y. Sung, Mater. Chem. Phys. 124, 422–426 (2010)

    Article  CAS  Google Scholar 

  21. N. Mir, M. Salavati-Niasari, Sol. Energy 86, 3397–3404 (2012)

    Article  CAS  Google Scholar 

  22. Y. Gao, Y.Q. Feng, B. Zhang, F. Zhang, X. Peng, L. Liu, S.X. Meng, RSC Adv. 4, 16992–16998 (2014)

    Article  CAS  Google Scholar 

  23. N.C. Saha, H.G. Tompkins, J. Appl. Phys. 72, 3072–3079 (1992)

    Article  CAS  Google Scholar 

  24. W. Guo, Y.H. Shen, T.L. Ma, J. Phys. Chem. C 115, 21494–21499 (2011)

    Article  CAS  Google Scholar 

  25. H.Q. Wang, J.P. Yan, W.F. Chang, Z.M. Zhang, Catal. Commun. 10, 989–994 (2009)

    Article  CAS  Google Scholar 

  26. N. Roy, K.T. Leung, D. Pradhan, J. Phys. Chem. C 119, 19117–19125 (2015)

    Article  CAS  Google Scholar 

  27. H. Wang, H.Y. Li, J.S. Wang, J.S. Wu, D.S. Li, M. Liu, P.L. Su, Electrochim. Acta 137, 744–750 (2014)

    Article  CAS  Google Scholar 

  28. X.F. Qiu, C. Burda, Chem. Phys. 339, 1–10 (2007)

    Article  CAS  Google Scholar 

  29. S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C.D. Valentin, G. Pacchioni, J. Am. Chem. Soc. 128, 15666–15671 (2006)

    Article  CAS  Google Scholar 

  30. N. Serpone, J. Phys. Chem. B. 110, 24287–24293 (2006)

    Article  CAS  Google Scholar 

  31. V.N. Kuznetsov, N. Serpone, J. Phys. Chem. B 110, 25203–25209 (2006)

    Article  CAS  Google Scholar 

  32. R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Phys. Rev. B 61, 7459–7465 (2000)

    Article  CAS  Google Scholar 

  33. Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Chem. Phys. 339, 20–26 (2007)

    Article  CAS  Google Scholar 

  34. F. Spadavecchia, C. Cappelletti, S. Ardizzone, C.L. Bianchi, S. Cappelli, C. Oliva, P. Scardi, M. Leoni, P. Fermo, Appl. Catal. B Environ. 96, 314–322 (2010)

    Article  CAS  Google Scholar 

  35. X. Peng, S.X. Meng, B. Zhang, Y.Q. Feng, Electrochim. Acta 115, 255–262 (2014)

    Article  CAS  Google Scholar 

  36. C.P. Hsu, K.M. Lee, T.W. Huang, C.Y. Lin, C.H. Lee, L.P. Wang, S.Y. Tsai, K.C. Ho, Electrochim. Acta 53, 7514–7522 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation of China (No. 21476162) and China International Science and Technology Project (No. 2012DFG41980).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao Zhang or Yaqing Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, B. & Feng, Y. N-doped TiO2 applied in low-temperature-based dye-sensitized solar cells. Res Chem Intermed 42, 6705–6718 (2016). https://doi.org/10.1007/s11164-016-2491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2491-1

Keywords

Navigation