Skip to main content
Log in

Dynamics of in-phase and anti-phase bursting in the coupled pre-Bötzinger complex cells

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Activity of neurons in the pre-Bötzinger complex within the mammalian brain stem has an important role in the generation of respiratory rhythms. Previous experimental results have shown that the dynamics of sodium and calcium within each cell may be responsible for various bursting mechanisms. In this paper, we study the bursting dynamics of the two-coupled pre-Bötzinger complex neurons. Using a combination of fast-slow decomposition and two-parameter bifurcation analysis, we explore the possible forms of dynamics that the model network can produce as well the transitions of in-phase and anti-phase bursting respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Best J, Borisyuk A, Rubin J, Terman D, Wechselberger M (2005) The dynamic range of bursting in a model respiratory pacemaker network. SIAM J Appl Dyn Syst 4:1107–1139

    Article  Google Scholar 

  • Bi QS, Zhang R, Zhang ZD (2014) Bifurcation mechanism of bursting oscillations in parametrically excited dynamical system. Appl Math Comput 243:482–491

    Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999a) Models of respiratory rhythm generation in the pre-Bötzinger complex I. Bursting pacemaker neurons. J Neurophysiol 82:382–397

    PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999b) Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82:398–415

    PubMed  Google Scholar 

  • Butera RJ, Smith JC, Rinzel J (1997) Rhythm generation and synchronization in a population of bursting neurons with excitatory synaptic coupling: a model for the respiratory oscillator Kernel. Soc Neurosci Abstr 23:1252

    Google Scholar 

  • Duan LX, Zhai DH, Tang XH (2012) Bursting induced by excitatory synaptic coupling in the pre-Bötzinger complex. Int J Bifurc Chaos 22:1250114

    Article  Google Scholar 

  • Gray PA, Rekling JC, Bocchiaro CM, Feldman JL (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the pre-Bötzinger complex. J Sci 286:1566–1568

    Article  CAS  Google Scholar 

  • Gu HG, Xiao WW (2014) Difference between intermittent chaotic bursting and spiking of neural firing patterns. Int J Bifurc Chaos 24:1450082

    Article  Google Scholar 

  • Guo DQ, Wang QY, Perc M (2012) Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys Rev E 85:061905

    Article  Google Scholar 

  • Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10:1171–1266

    Article  Google Scholar 

  • Jia B, Gu HG, Li L, Zhao XY (2012) Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns. Cognit Neurodyn 6:89–106

    Article  Google Scholar 

  • Kuznetsov YA (2005) Elements of applied bifurcation theory. Springer, New York

    Google Scholar 

  • Perc M, Marhl M (2003) Resonance effects determine the frequency of bursting Ca2+ oscillations. Chem Phys Lett 376:432–437

    Article  CAS  Google Scholar 

  • Perc M, Marhl M (2004a) Local dissipation and coupling properties of cellular oscillators: a case study on calcium oscillations. Bioelectrochemistry 62:1–10

    Article  CAS  PubMed  Google Scholar 

  • Perc M, Marhl M (2004b) Synchronization of regular and chaotic oscillations: the role of local divergence and the slow passage effect. Int J Bifurc Chaos 14:2735–2751

    Article  CAS  Google Scholar 

  • Perc M, Marhl M (2007) Different types of bursting calcium oscillations in non-excitable cells. Chaos Solitons Fract 18:759–773

    Article  Google Scholar 

  • Perc M, Marko G, Marhl M (2007) Periodic calcium waves in coupled cells induced by internal noise. Chem Phys Lett 437:143–147

    Article  CAS  Google Scholar 

  • Rinzel J (1985) Bursting oscillations in an excitable membrane model. Ordinary and partial differential equations. Springer, Berlin, pp 304–316

    Book  Google Scholar 

  • Rubin J (2006) Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation oscillators or square-wave burster. Phys Rev E 74:021917

    Article  Google Scholar 

  • Rubin JE, Shevtsova NA, Ermentrout GB et al (2009) Multiple rhythmic states in a model of the respiratory central pattern generator. J Neurophys 101:2146–2165

    Article  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. J Sci 254:726–729

    Article  CAS  Google Scholar 

  • Sun XJ, Lei JZ, Perc M, Kurths J, Chen GR (2011) Burst synchronization transitions in a neuronal network of sub-networks. Chaos 21:016110

    Article  PubMed  Google Scholar 

  • Wang QY, Chen GR, Perc M (2011) Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6:e15851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QY, Lu QS (2008) Synchronization transition induced by synaptic delay in coupled fast-spiking neurons. Int J Bifurc Chaos 18:1189C1198

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (11472009), Science and Technology Project of Beijing Municipal Commission of Education (KM201410009012) and Construction Plan for Innovative Research Team of North China University of Technology(XN07005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixia Duan.

Appendix

Appendix

For \(x\in \{s,m_P,m,h,n\}\), the function \({x}_{\infty }(v)\) takes the form \({x}_{\infty }(v)=\{1+ exp[(v-{\theta }_{x})/{\sigma }_{x}]\}^{-1}\), and for \({x}\in {h,n}\), the function \({\tau }_{x}(v)\) takes the form \({\tau }_{x}(v)\)= \({\tau }_{x}/cosh[(v-{\theta }_{x})/2{\sigma }_{x}]\). The parameter values are listed in the Table 1.

Table 1 Parameter values used in the model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Liu, J., Chen, X. et al. Dynamics of in-phase and anti-phase bursting in the coupled pre-Bötzinger complex cells. Cogn Neurodyn 11, 91–97 (2017). https://doi.org/10.1007/s11571-016-9411-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9411-3

Keywords

Navigation