Skip to main content
Log in

Density Measurement and Atomic Structure Simulation of Metastable Liquid Ti-Ni Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperature dependence of the densities of liquid Ti-Ni alloys was investigated by the electrostatic levitation technique and molecular dynamics simulation. The average cooling rate by natural radiation decreases with a reduction in Ti content and reaches its minimum at Ti55Ni45 alloy. The Ti-Ni alloy system exhibits a negative excess volume and it becomes smaller with the increase in undercooling. This indicates that the interactions among atoms are enhanced with the decrease in temperature. The pair correlation functions and static structure factors are obtained from the molecular dynamics results. It is found that the packing of the Ni atoms does not occur through replacement of the Ti atoms with the addition of Ni atoms. In addition, the clusters are abundant in liquid Ti-Ni alloys, and a tetragonal bipyramid atomic configuration of may exist. It is found that the Ni-Ni bonds transform to Ti-Ni bonds with the increase in Ni content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. G. Quirinale, G. E. Rustan, A. Kreyssig, and A. I. Goldman: Appl. Phys. Lett., 2015, vol. 106, pp. 241906-09.

    Article  Google Scholar 

  2. R. Rajavaram, H. Kim, C. H. Lee, W. S. Cho, C. H. Lee, and J. Lee: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1595-1601.

    Article  Google Scholar 

  3. H. Kobatake, H. Khosroabadi, and H. Fukuyama: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2466-72.

    Article  Google Scholar 

  4. A. K. Gangopadhyay, M. E. Blodgett, M. L. Johnson, A. J. Vogt, N. A. Mauro, and K. F. Kelton: Appl. Phys. Lett., 2014, vol. 104, pp. 191907-11.

    Article  Google Scholar 

  5. T. Ishikawa, J. T. Okada, P. F. Paradis, and Y. Watanabe: J. Chem. Thermodyn., 2016, vol. 103, pp. 107-14.

    Article  CAS  Google Scholar 

  6. M. P. SanSoucie, J. R. Rogers, V. Kumar, J. Rodriguez, X. Xiao, and D. M. Matson: Int. J. Thermophys., 2016, vol. 37, pp. 76-86.

    Article  Google Scholar 

  7. H. P. Wang, C. H. Zheng, P. F. Zou, S. J. Yang, L. Hu, and B. Wei, J. Mater. Sci. Technol., 2017, vol. 34, pp. 436-39.

    Article  Google Scholar 

  8. D. G. Quirinale, G. E. Rustan, S. R. Wilson, M. J. Kramer, A. I. Goldman, and M. I. Mendelev: J. Phys.: Condens. Matter, 2015, vol. 27, pp. 085004-09.

    CAS  Google Scholar 

  9. A. K. Gangopadhyay, M. E. Blodgett, M. L. Johnson, J. McKnight, V. Wessels, A. J. Vogt, N. A. Mauro, J. C. Bendert, R. Soklaski, L. Yang, and K. F. Kelton: J. Chem. Phys., 2014, vol. 140, pp. 044505-12.

    Article  CAS  Google Scholar 

  10. I. Kaban, P. Jóvári, V. Kokotin, O. Shuleshova, B. Beuneu, K. Saksl, N. Mattern, J. Eckert, and A. L. Greer: Acta Mater., 2013, vol. 61, pp. 2509-20.

    Article  CAS  Google Scholar 

  11. H. P. Wang, and B. Wei: Phys. Lett. A, 2010, vol. 374, pp. 4787-92.

    Article  CAS  Google Scholar 

  12. H. L. Peng, T. Voigtmann, G. Kolland, H. Kobatake, and J. Brillo: Phys. Rev. B, 2015, vol. 92, pp. 4201-13.

    Google Scholar 

  13. J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D. L. Price, D. Thiaudiere, and D. Zanghi: J. Non-Cryst. Solids, 2006, vol. 352, pp. 4008-12.

    Article  CAS  Google Scholar 

  14. J. Ding, Y. Q. Cheng, H. Sheng, and E. Ma: Phys. Rev. B, 2012, vol. 85, pp. 0201-05.

    Google Scholar 

  15. C. Liang, H. Wang, J. Yang, B. Li, Y. Yang, and H. Li: Appl. Surf. Sci., 2012, vol. 261, pp. 337-42.

    Article  CAS  Google Scholar 

  16. P. Sedmak, J. Pilch, L. Heller, J. Kopecek, J. Wright, P. Sedlak, M. Frost, and P. Sittner: Science, 2016, vol. 353, pp. 559 -62.

    Article  CAS  Google Scholar 

  17. S. Kustov, D. Salas, E. Cesari, R. Santamarta, D. Mari, and J. Van Humbeeck: Acta Mater., 2014, vol. 73, pp. 275-86.

    Article  CAS  Google Scholar 

  18. G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, and K. Otsuka: Acta Mater., 2004, vol. 52, pp. 4351-62.

    Article  CAS  Google Scholar 

  19. B. Karbakhsh Ravari, S. Farjami, and M. Nishida: Acta Mater., 2014, vol. 69, pp. 17-29.

    Article  CAS  Google Scholar 

  20. A. M. Pérez Sierra, J. Pons, R. Santamarta, I. Karaman, and R. D. Noebe: Scripta Mater., 2016, vol. 124, pp. 47-50.

    Article  Google Scholar 

  21. R. Santamarta, R. Arróyave, J. Pons, A. Evirgen, I. Karaman, H. E. Karaca, and R. D. Noebe: Acta Mater., 2013, vol. 61, pp. 6191-206.

    Article  CAS  Google Scholar 

  22. N. Gao, and W. S. Lai: J. Phys.: Condens. Matter, 2007, vol. 19, pp. 046213-24.

    Google Scholar 

  23. J. Basu, B. S. Murty, and S. Ranganathan: J. Alloy. Compd., 2008, vol. 465, pp. 163-72.

    Article  CAS  Google Scholar 

  24. L. C. R. Aliaga, M. F. de Oliveira, C. Bolfarini, W. J. Botta, and C. S. Kiminami: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1932-35.

    Article  CAS  Google Scholar 

  25. P. F. Zou, H. P. Wang, S. J. Yang, L. Hu, and B. Wei: Chem. Phys. Lett., 2017, vol. 681, pp. 101-04.

    Article  CAS  Google Scholar 

  26. M. Baskes: Phys. Rev. B, 1992, vol. 46, pp. 2727-42.

    Article  CAS  Google Scholar 

  27. W. S. Ko, B. Grabowski, and J. Neugebauer: Phys. Rev. B, 2015, vol. 92, pp. 4107-28.

    Article  Google Scholar 

  28. S. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1-19.

    Article  CAS  Google Scholar 

  29. H. Yoo, C. Park, S. Jeon, S. Lee, and G. W. Lee, Metrologia, vol. 52, 677 (2015).

    Article  CAS  Google Scholar 

  30. T. Ishikawa, P. F. Paradis, and Y. Saita: J. Jpn. Inst. Met., 2004, vol.68, pp. 781–86.

    Article  CAS  Google Scholar 

  31. P. F. Paradis, and W. K. Rhim: J. Chem. Thermodyn., 1999, vol. 32, pp. 123-33.

    Article  Google Scholar 

  32. K. D. Machado, J. C. de Lima, C. E. M. de Campos, T. A. Grandi, and D. M. Trichês: Phys. Rev. B, 2002, vol. 66, pp. 4205-11.

    Article  Google Scholar 

  33. G. W. Lee, A. K. Gangopadhyay, R. W. Hyers, T. J. Rathz, J. R. Rogers, D. S. Robinson, A. I. Goldman, and K. F. Kelton: Phys. Rev. B, 2008, vol. 77, pp. 4102-09.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51327901, 51522102, 51734008, and 51401169) and the Fundamental Research Funds for the Central Universities. The authors are grateful to Mr. P. Lü for helping in MD simulations, Miss L. Wang and Mr. C.H. Zheng for their help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Manuscript submitted February 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, P.F., Wang, H.P., Yang, S.J. et al. Density Measurement and Atomic Structure Simulation of Metastable Liquid Ti-Ni Alloys. Metall Mater Trans A 49, 5488–5496 (2018). https://doi.org/10.1007/s11661-018-4877-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4877-8

Navigation