Skip to main content
Log in

Mechanism of Decrease in Impact Toughness in a Low-Carbon MnCrMoNiCu Plate Steel with Increasing Austenitizing Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to reveal how microscopic factors affect the toughness and the occurrence of cleavage fracture of a low-carbon MnCrMoNiCu alloyed steel, a series of thermal treatments was performed on the steel employing a thermomechanical simulator. These involved reheating samples at different temperatures (950-1250 °C), producing different prior austenite sizes, followed by a continuous cooling transformation process. The Charpy V-notch toughness was determined, and the effect of austenite grain size on the ductile-to-brittle transition temperatures of the steel was investigated. The microstructural evolution on the austenite sizes was studied, fracture features were characterized, the critical event for cleavage fracture was identified, and the local cleavage fracture stress σf was calculated. The impact toughness decreased as the austenitizing temperature increased. A quantitative relationship between σf and the size of the initial cleavage fracture facet (microcrack nucleus) af in the lathy martensite + bainite microstructure has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.W. Morris, Jr., Stronger, Tougher Steels, Science, 2008, 320, p 1022–1023

    Article  Google Scholar 

  2. T. Hanamura, F. Yin, and K. Nagai, Ductile–Brittle Transition Temperature of Ultrafine Ferrite Cementite Microstructure in a Low Carbon Steel Controlled by Effective Grain Size, ISIJ Int., 2004, 44, p 610–617

    Article  Google Scholar 

  3. J.W. Morris, Jr., On the Ductile–Brittle Transition in Martensitic Steels, ISIJ Int., 2011, 51, p 1569–1575

    Article  Google Scholar 

  4. S.Y. Shin, K.J. Woo, B. Hwang, S. Kim, and S. Lee, Fracture Toughness Analysis in Transition Temperature Region of Three American Petroleum Institute X70 and X80 Pipe Line Steels, Metall. Mater. Trans. A, 2009, 40A, p 867–876

    Article  Google Scholar 

  5. J.H. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals. A Comprehensive Microphysical Model for Cleavage Cracking in Metals, Elsevier, Oxford, 2014, ISBN 9780128007655

    Google Scholar 

  6. R. Cao, X.B. Zhang, Z. Wang, Y. Peng, W.S. Du, Z.L. Tian, and J.H. Chen, Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal, Metall. Mater. Trans. A, 2014, 45A, p 815–834

    Article  Google Scholar 

  7. A. Di Schino and C. Guarnaschelli, Effect of Microstructure on Cleavage Resistance of High-strength Quenched and Tempered Steels, Mater. Lett., 2009, 63, p 1968–1972

    Article  Google Scholar 

  8. N. Isasti, D. Jorge-Badiola, M.L. Taheri, and P. Uranga, Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness, Metall. Mater. Trans. A, 2014, 45A, p 4972–4982

    Article  Google Scholar 

  9. S. Pallaspuro, A. Kaijalainen, S. Mehtonen, J. Kömi, Z. Zhang, and D. Porter, Effect of Microstructure on the Impact Toughness Transition Temperature of Direct-Quenched Steels, Mater. Sci. Eng. A, 2018, A712, p 671–680

    Article  Google Scholar 

  10. J.P. Naylor, The Influence of the Lath Morphology on the Yield Stress and Transition Temperature of Martensitic–Bainitic Steels, Metall. Trans. A, 1979, 10A, p 861–873

    Article  Google Scholar 

  11. A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Technol., 2000, 16, p 26–40

    Article  Google Scholar 

  12. A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel, Metall. Mater. Trans. A, 2004, 35A, p 1039–1053

    Article  Google Scholar 

  13. J.W. Morris, Jr., C.S. Lee, and Z. Guo, The Nature and Consequences of Coherent Transformations in Steel, ISIJ Int., 2003, 43, p 410–419

    Article  Google Scholar 

  14. J.W. Morris, Jr., C. Kinney, K. Pytlewski, and Y. Adachi, Microstructure and Cleavage in Lath Martensitic Steels, Sci. Technol. Adv. Mater., 2013, 14, p 1–9

    Article  Google Scholar 

  15. M. Tsuboi, A. Shibata, D. Terada, and N. Tsuji, Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature Embrittlement of Low-Carbon Martensitic Steel, Metall. Mater. Trans. A, 2017, 48A, p 3261–3268

    Article  Google Scholar 

  16. A. Ghosh, S. Das, and S. Chatterjee, Aging Behavior of a Cu-Bearing Ultrahigh Strength Steel, Mater. Sci. Eng. A, 2008, 486, p 152–157

    Article  Google Scholar 

  17. S.K. Dhua, D. Mukerjee, and D.S. Sarma, Effect of Cooling Rate on the As Quenched Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Metall. Mater. Trans. A, 2003, 34A, p 2493–2504

    Article  Google Scholar 

  18. S.K. Dhua, D. Mukerjee, and D.S. Sarma, Influence of Tempering on the Microstructure and Mechanical Properties of HSLA-100 Steel Plates, Metall. Mater. Trans. A, 2001, 32A, p 2259–2270

    Article  Google Scholar 

  19. S.K. Dhua, A. Ray, and D.S. Sarma, Effect of Tempering Temperatures on the Mechanical Properties and Microstructures of HSLA-100 Type Copper-Bearing Steels, Mater. Sci. Eng. A, 2001, A318, p 197–210

    Article  Google Scholar 

  20. P.K. Ray, R.I. Ganguly, and A.K. Panda, Optimization of Mechanical Properties of an HSLA-100 Steel Through Control of Heat Treatment Variables, Mater. Sci. Eng. A, 2003, A346, p 122–131

    Article  Google Scholar 

  21. Y. You, X.M. Wang, and C.J. Shang, Influence of Austenitizing Temperature on the Microstructure and Impact Toughness of a High Strength Low Alloy HSLA100 Steel, Acta Metall. Sin., 2012, 48, p 1290–1298

    Article  Google Scholar 

  22. D.S. Liu, B.G. Cheng, and Y.Y. Cheng, Strengthening and Toughening of a Heavy Plate Steel for Shipbuilding with Yield Strength of Approximately 690 MPa, Metall. Mater. Trans. A, 2013, 44A, p 440–455

    Article  Google Scholar 

  23. B.G. Cheng, M. Luo, and D.S. Liu, High Strength, Low Carbon, Cu-Containing Steel Plates with Tailored Microstructure and Low Yield Ratio’, Ironmak. Steelmak., 2015, 42, p 608–617

    Article  Google Scholar 

  24. D.S. Liu, B.G. Cheng, and Y.Y. Cheng, Fine Microstructure and Toughness of Low Carbon Copper Containing Ultrahigh Strength NV F690 Heavy Steel Plate, Acta Metall. Sin., 2012, 48, p 334–342

    Article  Google Scholar 

  25. G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski, Microstructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-Affected-Zone during Welding, Metall. Mater. Trans. A, 1995, 26A, p 3277–3293

    Article  Google Scholar 

  26. M. Shome and O.N. Mohanty, Continuous Cooling Transformation Diagrams Applicable to the Heat-Affected Zone of HSLA-80 and HSLA-100 Steels, Metall. Mater. Trans. A, 2006, 37A, p 2159–2169

    Article  Google Scholar 

  27. D. Chae, C.J. Young, D.M. Goto, and D.A. Kos, Failure Behavior of Heat-Affected Zones Within HSLA-100 and HY-100 Steel Weldments, Metall. Mater. Trans. A, 2001, 32A, p 2229–2237

    Article  Google Scholar 

  28. S.K. Dhua, D. Mukerjee, and D.S. Sarma, Weldability and Microstructural Aspects of Shielded Metal Arc Welded HSLA-100 Steel Plates, ISIJ Int., 2002, 42(3), p 290–298

    Article  Google Scholar 

  29. K. Banerjee and U.K. Chatterjee, Effect of Microstructure on Hydrogen Embrittlement of Weld-Simulated HSLA-80 and HSLA-100 Steels, Metall. Mater. Trans. A, 2003, 34A, p 1297–1309

    Article  Google Scholar 

  30. K. Banerjee, M. Militzer, M. Perez, and X. Wang, Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel, Metall. Mater. Trans. A, 2010, 41A, p 3161–3172

    Article  Google Scholar 

  31. R. Cao, J. Li, D.S. Liu, J.Y. Ma, and J.H. Chen, Micromechanism of Decrease of Impact Toughness in Coarse-Grain Heat-Affected Zone of HSLA Steel with the Increasing Weld Heat Input, Metall. Mater. Trans. A, 2015, 46A, p 2999–3014

    Article  Google Scholar 

  32. D.S. Liu, M. Luo, B.G. Cheng, R. Cao, and J.H. Chen, Microstructural Evolution and Ductile-to-Brittle Transition in a Low Carbon MnCrMoNiCu Heavy Plate Steel, Metall. Mater. Trans. A, 2018. https://doi.org/10.1007/s11661-018-4823-9

    Google Scholar 

  33. D.S. Liu, Q.L. Li, and T. Emi, Microstructure and Mechanical Properties in Hot Rolled Extra-High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding, Metall. Mater. Trans. A, 2011, 42A(5), p 1349–1361

    Article  Google Scholar 

  34. W.L. Server, General Yielding of Charpy V-Notch and Precracked Charpy Specimens, J. Eng. Mater. Technol., 1978, 100, p 183–188

    Article  Google Scholar 

  35. E.I. Galindo-Nava and P.E.J. Rivera-Diaz-del-Castillo, Model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93

    Article  Google Scholar 

  36. S.Y. Sung, S.S. Sohn, S.Y. Shin, K.S. Oh, and S. Lee, Effects of Oxides on Tensile and Charpy Impact Properties and Fracture Toughness in Heat Affected Zones of Oxide-Containing API, X80 Linepipe Steels, Metall. Mater. Trans. A, 2014, 45A, p 3036–3050

    Article  Google Scholar 

  37. M. Shome, D.S. Sarma, O.P. Gupta, and O.N. Mohanty, Precipitate Dissolution and Grain Growth in the Heat Affected Zone of HSLA-100 Steel, ISIJ Int., 2003, 43, p 1431–1437

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support received from Jiansu Shagang Group Co., Ltd. Dr. Q. X. Feng is thanked for performing the thermomechanical tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Liu, D., Cheng, B. et al. Mechanism of Decrease in Impact Toughness in a Low-Carbon MnCrMoNiCu Plate Steel with Increasing Austenitizing Temperature. J. of Materi Eng and Perform 27, 4855–4870 (2018). https://doi.org/10.1007/s11665-018-3591-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3591-4

Keywords

Navigation