Skip to main content
Log in

Dynamics of water mobility and distribution in Sur clam (Mactra chinensis) during dehydration and rehydration processes assessed by low-field NMR and MRI

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Drying method effects on water dynamics in Sur clam during dehydration and rehydration were studied using the non-destructive nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques. Three water populations were observed in Sur clam samples with different migration behavior when they were dried by hot air at 60 °C for 8 h versus sun-dried for 53 h. Good correlation between the A2 parameter of NMR and moisture ratio M R was found, and the Page model exhibited the maximum coefficient R 2 value with the minimum root mean squared error. Notably, the NMR and MRI characterization showed that the water release of hot-air dried clams was different from that of the sun-dried samples, and the principal component analysis (PCA) of NMR relaxation data offered a stable classification for the hot-air dried and sun-dried clams. Similarly, the rehydration of hot-air dried and sun-dried clams was also assessed by NMR and MRI revealing that the absorbed water was mainly the immobilized and free water. The proper rehydration time was 180 and 120 min, respectively, for the hot-air and sun dried clams. The rehydrated clams could be distinguished from the boiled samples before dehydration process through the PCA of NMR relaxation data, but undistinguishable between the rehydrated hot-air dried and sun-dried clams. These results demonstrated that NMR and MRI are effective methods for non-destructive analysis of Sur clams during dehydration and rehydration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Anacleto, A.L. Maulvault, V.M. Lopes, T. Repolho, M. Diniz, M.L. Nunes, A. Marques, R. Rosa, Comp. Biochem. Physiol. A 175, 28–37 (2014)

    Article  CAS  Google Scholar 

  2. L. Mayor, A.M. Sereno, J. Food Eng. 61, 373–386 (2004)

    Article  Google Scholar 

  3. I.G. Aursand, E. Veliyulin, U. Böcker, R. Ofstad, T. Rustad, U. Erikson, J. Agric. Food Chem. 57, 46–54 (2009)

    Article  CAS  Google Scholar 

  4. I.G. Aursand, L. Gallartjornet, U. Erikson, D.E. Axelson, T. Rustad, J. Agric. Food Chem. 56, 6252–6260 (2008)

    Article  CAS  Google Scholar 

  5. Y. Xu, Y. Liu, C. Zhang, X. Li, S. Yi, J. Li, Int. J. Food Prop. 19, 196–209 (2015)

    Article  Google Scholar 

  6. G. Gullo, A. Dattola, G. Liguori, V. Vonella, R. Zappia, P. Inglese, J. Berry Res. 6, 25–35 (2016)

    Article  CAS  Google Scholar 

  7. C.D.S. Carneiro, E.T. Mársico, C.A. Conte-Júnior, S.B. Mano, C.J.C. Augusto, E.F.O.D. Jesus, J. Food Eng. 169, 321–325 (2016)

    Article  Google Scholar 

  8. S.M. Jepsen, H.T. Pedersen, S.B. Engelsen, J. Sci. Food Agric. 79, 1793–1802 (1999)

    Article  CAS  Google Scholar 

  9. G.H. Sørland, P.M. Larsen, F. Lundby, A.P. Rudi, T. Guiheneuf, Meat Sci 66, 543–550 (2004)

    Article  Google Scholar 

  10. Q. Zhang, A.S.M. Saleh, Q. Shen, Food Bioprocess Technol. 6, 2562–2570 (2013)

    Article  CAS  Google Scholar 

  11. R.N.M. Pitombo, G.A.M.R. Lima, J. Food Eng. 58, 59–66 (2003)

    Article  Google Scholar 

  12. E. Kirtil, M.H. Ozto, Food Eng. Rev. 8, 1–22 (2015)

    Article  Google Scholar 

  13. J.H. Cheng, Q. Dai, D.W. Sun, X.A. Zeng, D. Liu, H.B. Pu, Trends Food Sci. Technol. 34, 18–31 (2013)

    Article  CAS  Google Scholar 

  14. H. Yang, W. Zhang, T. Li, H. Zheng, M.A. Khan, X. Xu, J. Sun, G. Zhou, Food Chem. 204, 239–245 (2016)

    Article  CAS  Google Scholar 

  15. M. Li, H. Wang, G. Zhao, M. Qiao, M. Li, L. Sun, X.P. Gao, J.W. Zhang, J. Food Eng. 139, 43–49 (2014)

    Article  Google Scholar 

  16. X. Li, L.Z. Ma, Y. Tao, B.H. Kong, P.J. Li, Adv. Mater. Res. 550–553, 3406–3410 (2012)

    Google Scholar 

  17. M. Gudjónsdóttir, S. Arason, T. Rustad, J. Food Eng. 104, 23–29 (2011)

    Article  Google Scholar 

  18. R.D.O.R. Ribeiro, E.T. Mársico, C. Da Silva Carneiro, M.L.G. Monteiro, C.A.C. Júnior, S. Mano, et al., LWT—Food Sci. Technol. 55, 90–95 (2014)

    CAS  Google Scholar 

  19. L. Zhang, M.J. Mccarthy, Postharvest Biol. Technol. 67, 96–101 (2012)

    Article  CAS  Google Scholar 

  20. F.M.V. Pereira, A.D.S. Carvalho, L.F. Cabeça, L.A. Colnago, Microchem. J. 108, 14–17 (2013)

    Article  CAS  Google Scholar 

  21. S. Geng, H. Wang, X. Wang, X.J. Ma, S. Xia, J. Wang, M. Tan, Anal. Methods 7, 2413–2419 (2015)

    Article  CAS  Google Scholar 

  22. Y. Deng, Y. Luo, Y. Wang, J. Yue, Z. Liu, Z. Yu, Y. Zhao, H. Yang, J. Food Eng. 123, 23–31 (2014)

    Article  CAS  Google Scholar 

  23. H.C. Bertram, A.H. Karlsson, M. Rasmussen, O.D. Pedersen, A. Sune Dønstrup, H.J. Andersen, J. Agric. Food Chem. 49, 3092–3100 (2001)

    Article  CAS  Google Scholar 

  24. E. Micklander, B. Peshlov, P.P. Purslow, S.B. Engelsen. Trends Food Sci. Technol. 13, 341–346 (2002)

    Article  CAS  Google Scholar 

  25. K.L. Pearce, K. Rosenvold, H.J. Andersen, D.L. Hopkins, Meat Sci 89, 111–124 (2011)

    Article  Google Scholar 

  26. P. Belton. Food Rev. Int. 27, 170–191(2011)

    Article  CAS  Google Scholar 

  27. H.C. Bertram, M.D. Aaslyng, H.J. Andersen, Meat Sci 70, 75–81 (2005)

    Article  CAS  Google Scholar 

  28. H.R. Tang, J. Godward, B. Hills. Carbohydr. Polym. 43, 375–387 (2001)

    Article  Google Scholar 

  29. J. Liu, K. Zhu, T. Ye, S. Wan, Y. Wang, D. Wang, B. Li, C. Wang, Food Res. Int. 51, 437–443 (2013)

    Article  CAS  Google Scholar 

  30. M. Bhattacharya, P.P. Srivastav, H.N. Mishra, J. Food Sci. Technol. 52, 2013–2022 (2015)

    Article  CAS  Google Scholar 

  31. G. Adiletta, P. Russo, W. Senadeera, M.D. Matteo, J. Food Eng. 172, 9–18 (2016)

    Article  CAS  Google Scholar 

  32. A. Belghith, S. Azzouz, A. Elcafsi, Heat Mass Transf. 52, 1–13 (2015)

    Google Scholar 

  33. H.M. Ji, M.J. Kim, H.C. Dong, C.H. Pan, W.B. Yoon, J. Food Process Preserv. 38, 1534–1546 (2014)

    Article  Google Scholar 

  34. X. Shao, Y. Li. Food Bioprocess Technol. 5, 1–7 (2010)

    Google Scholar 

  35. S. Lin, S. Yang, X. Li, F. Chen, M. Zhang, Food Chem. 199, 280–286 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Scientific Instrument and Equipment Development Project of China (2013YQ17046307), the National Key Research and Development Program of China (2016YFD0400404), the National Nature Science Foundation of China (31401520, 31401519), and the National Key Technology Research and Development Program of China in 12th Five-Year Plan (2014BAD04B09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqian Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Lin, Z., Xia, K. et al. Dynamics of water mobility and distribution in Sur clam (Mactra chinensis) during dehydration and rehydration processes assessed by low-field NMR and MRI. Food Measure 11, 1342–1354 (2017). https://doi.org/10.1007/s11694-017-9512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9512-7

Keywords

Navigation