Skip to main content
Log in

Size distributions and source function of sea spray aerosol over the South China Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The number concentrations in the radius range of 0.06–5 μm of aerosol particles and meteorological parameters were measured on board during a cruise in the South China Sea from August 25 to October 12, 2012. Effective fluxes in the reference height of 10 m were estimated by steady state dry deposition method based on the observed data, and the influences of different air masses on flux were discussed in this paper. The number size distribution was characterized by a bimodal mode, with the average total number concentration of (1.50 ± 0.76)×103 cm-3. The two mode radii were 0.099 µm and 0.886 µm, both of which were within the scope of accumulation mode. A typical daily average size distribution was compared with that measured in the Bay of Bengal. In the whole radius range, the number concentrations were in agreement with each other; the modes were more distinct in this study than that abtained in the Bay of Bengal. The size distribution of the fluxes was fitted with the sum of log-normal and power-law distribution. The impact of different air masses was mainly on flux magnitude, rather than the shape of spectral distribution. A semiempirical source function that is applicable in the radius range of 0.06 µm<r 80<0.3 µm with the wind speed varying from 1.00 m s-1 to 10.00 m s-1 was derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L., 1998. A new sea spray generation function for wind speeds up to 32 m s-1. Journal of Physical Oceanography, 28 (11): 2175–2184.

    Article  Google Scholar 

  • Ceburnis, D., Rinaldi, M., Keane-Brennan, J., Ovadnevaite, J., Martucci, G., Giulianelli, L., and O’Dowd, C. D., 2014. Marine submicron aerosol sources, sinks and chemical fluxes. Atmospheric Chemistry and Physics Discussions, 14 (17): 23847–23889, DOI: 10.5194/acpd-14-23847-2014.

    Article  Google Scholar 

  • Clarke, A. D., Owens, S. R., and Zhou, J., 2006. An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. Journal of Geophysical Research, 111: D06202, DOI: 10.1029/2005JD006565.

    Article  Google Scholar 

  • De Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C., and Schwartz, S. E., 2011. Production flux of sea spray aerosol. Reviews of Geophysics, 49 (2), DOI: 10.1029/2010RG000349.

    Google Scholar 

  • Fairall, C. W., Kepert, J. D., and Holland, G. J., 1994. The effect of sea spray on surface energy transports over the ocean. The Global Atmosphere and Ocean System, 2 (2-3): 121–142.

    Google Scholar 

  • Ganguly, D., Jayaraman, A., Gadhavi, H., and Rajesh, T. A., 2005. Features in wavelength dependence of aerosol absorption observed over central India. Geophysical Research Letters, 32 (13), DOI: 10.1029/2005GL023023.

    Google Scholar 

  • Geever, M., O’Dowd, C. D., van Ekeren, S., Flanagan, R., Nilsson, E. D., De Leeuw, G., and Rannik, Ü., 2005. Submicron sea spray fluxes. Geophysical Research Letters, 32 (15), DOI: 10.1029/2005GL023081.

    Google Scholar 

  • Gong, S. L., 2003. A parameterization of sea-salt aerosol source function for sub-and super-micron particles. Global Biogeochemical Cycles, 17 (4), DOI: 10.1029/2003GB002079.

    Google Scholar 

  • Grythe, H., Ström, J., and Krejci, R., 2014. A review of sea spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmospheric Chemistry and Physics, 14 (3): 1277–1297, DOI: 10.5194/ACP-14-1277-2014.

    Article  Google Scholar 

  • Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T., 2011. Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmospheric Chemistry and Physics, 11 (7): 3137–3157, DOI: 10.5194/ACP-11-3137-2011.

    Article  Google Scholar 

  • Jiménez-Guerrero, P., Jorba, O., Pay, M. T., Montávez, J. P., Jerez, S., Gómez-Navarro, J. J., and Baldasano, J. M., 2011. Comparison of two different sea-salt aerosol schemes as implemented in air quality models applied to the Mediterranean Basin. Atmospheric Chemistry and Physics, 11 (10): 4833–4850, DOI: 10.5194/acp-11-4833-2011.

    Article  Google Scholar 

  • Lewis, E. R., and Schwartz, S. E., 2004. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models–A Critical Review. American Geophysical Union. Washington DC,412–412.

    Google Scholar 

  • Lewis, E. R., and Schwartz, S. E., 2006. Comment on ‘size distribution of sea-salt emissions as a function of relative humidity’. Atmospheric Environment, 40 (3): 588–590.

    Article  Google Scholar 

  • Lin, P., Hu, M., Wu, Z., Niu, Y., and Zhu, T., 2007. Marine aerosol size distributions in the springtime over China adjacent seas. Atmospheric Environment, 41 (32): 6784–6796, DOI: 10.1016/j.atmosenv.2007.04.045.

    Article  Google Scholar 

  • Lundgren, K., 2006. Numerical simulation of the spatial and temporal distribution of sea salt particles on the regional scale. Master thesis. Department of Meteorology Stockholm University, Stockholm, Sweden.

    Google Scholar 

  • Mårtensson, E. M., Nilsson, E. D., De Leeuw, G., Cohen, L. H., and Hansson, H. C., 2003. Laboratory simulations and parameterization of the primary marine aerosol production. Journal of Geophysical Research, 108 (D9): 4297, DOI: 10.1029/2002JD002263.

    Article  Google Scholar 

  • Monahan, E. C., Spiel, D. E., and Davidson, K. L., 1986. A model of marine aerosol generation via whitecaps and wave disruption. In: Oceanic Whitecaps. Monahan, E. C., and Mac Niocaill, G., eds., Springer Netherlands, 167–174.

    Chapter  Google Scholar 

  • Nilsson, E. D., Rannik, Ü., Swietlicki, E., Leck, C., Aalto, P. P., Zhou, J., and Norman, M., 2001. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea. Journal of Geophysical Research: Atmospheres (1984–2012), 106 (D23): 32139–32154, DOI: 10.1029/2000JD900747.

    Google Scholar 

  • Norris, S. J., Brooks, I. M., Moat, B. I., Yelland, M. J., De Leeuw, G., Pascal, R. W., and Brooks, B., 2013. Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean. Ocean Science, 9 (1): 133–145.

    Article  Google Scholar 

  • O’Dowd, C. D., and De Leeuw, G., 2007. Marine aerosol production: A review of the current knowledge. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365 (1856): 1753–1774, DOI: 10.1098.rsta.2007.2043,published 15.

    Article  Google Scholar 

  • O’Dowd, C. D., Smith, M. H., Consterdine, I. E., and Lowe, J. A., 1997. Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmospheric Environment, 31 (1): 73–80.

    Article  Google Scholar 

  • Ovadnevaite, J., Ceburnis, D., Canagaratna, M., Berresheim, H., Bialek, J., Martucci, G., and O’Dowd, C., 2012. On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. Journal of Geophysical Research: Atmospheres (1984–2012), 117 (D16), DOI: 10.1029/2011JD017379.

    Google Scholar 

  • Petelski, T., and Piskozub, J., 2006. Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic. Journal of Geophysical Research: Oceans (1978–2012), 111 (C6), DOI: 10.1029/2005JC003295.

    Google Scholar 

  • Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M. D., DeMott, P. J., and Moffet, R. C., 2013. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proceedings of the National Academy of Sciences, 110 (19): 7550–7555.

    Article  Google Scholar 

  • Prijith, S. S., Aloysius, M., and Mohan, M., 2014. Relationship between wind speed and sea salt aerosol production: A new approach. Journal of Atmospheric and Solar-Terrestrial Physics, 108: 34–40, DOI: 10.1016/j.jastp.2013.12.009.

    Article  Google Scholar 

  • Reid, J. S., Jonsson, H. H., Smith, M. H., and Smirnov, A., 2001. Evolution of the vertical profile and flux of large sea-salt particles in a coastal zone. Journal of Geophysical Research, 106 (D11): 12039–12053, DOI: 10.1029/2000JD900848.

    Article  Google Scholar 

  • Seinfeld, J. H., and Pandis, S. N., 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York, 429–433.

    Google Scholar 

  • Sievering, H., Cainey, J., Harvey, M., McGregor, J., Nichol, S., and Quinn, P., 2004. Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. Journal of Geophysical Research: Atmospheres (1984–2012), 109: D19317, DOI: 10.1029/2003JD004315.

    Article  Google Scholar 

  • Slinn, S. A., and Slinn, W. G. N., 1980. Predictions for particle deposition on natural waters. Atmospheric Environment (1967), 14 (9): 1013–1016, DOI: 10.1016/0004-6981(80)90032-3.

    Article  Google Scholar 

  • Smith, M. H., Park, P. M., and Consterdine, I. E., 1993. Marine aerosol concentrations and estimated fluxes over the sea. Quarterly Journal of the Royal Meteorological Society, 119 (512): 809–824, DOI: 10.1002/qj.49711951211.

    Article  Google Scholar 

  • Tedeschi, G., and Piazzola, J., 2011. Development of a 2D marine aerosol transport model: Application to the influence of thermal stability in the marine atmospheric boundary layer. Atmospheric Research, 101 (1): 469–479, DOI: 10.1016/j.atmosres.2011.04.013.

    Article  Google Scholar 

  • Vignati, E., Leeuw, G., and Berkowicz, R., 2001. Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer. Journal of Geophysical Research: Atmospheres (1984–2012), 106 (D17): 20225–20238, DOI: 10.1029/2000JD000025.

    Article  Google Scholar 

  • Zhang, K. M., Knipping, E. M., Wexler, A. S., Bhave, P. V., and Tonnesen, G. S., 2005. Size distribution of sea-salt emissions as a function of relative humidity. Atmospheric Environment, 39 (18): 3373–3379, DOI: 10.1016/j.atmosenv.2005.02.032.

    Article  Google Scholar 

  • Zhao, D. L., 2012. Advances in sea spray aerosols and the effects on air-sea interaction. Advances in Earth Science, 27 (6): 624–632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Sheng, L., Liu, Q. et al. Size distributions and source function of sea spray aerosol over the South China Sea. J. Ocean Univ. China 15, 569–576 (2016). https://doi.org/10.1007/s11802-016-2856-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-2856-5

Keywords

Navigation