Skip to main content
Log in

Developing Novel Combination Drying Method for Jackfruit Bulb Chips: Instant Controlled Pressure Drop (DIC)-Assisted Freeze Drying

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Jackfruit chips are very popular in South Asia; however, the quality of traditional hot air-dried jackfruit chips is not desirable due to brown color and high hardness. The effects of three drying methods, instant controlled pressure drop-assisted freeze drying (FD-DIC), instant controlled pressure drop-assisted hot air drying (AD-DIC), and freeze drying (FD), on the physicochemical characteristics, color, antioxidant activity, expansion ratio, texture, rehydration, hygroscopicity, and microstructure of jackfruit (Artocarpus heterophyllus L.) chips were investigated. The FD-DIC-dried jackfruit chips showed the highest expansion ratio (119 %), the best color (△E, 6.5) and texture (hardness 42 N, crispness 19) compared with the FD- and AD-DIC-dried samples. A substantial increase in pore size was observed in the microstructure of the FD-DIC-dried chips. Compared with AD-DIC, the FD-DIC-finished jackfruit chips exhibited stronger antioxidant capacities (DPPH· free radical scavenging activity, ferric reducing power, and ABTS·+ radical cation scavenging activity) and higher retention of phenolics (1.2 mg GAE g−1) and carotenoids (3.1 μg CE g−1). In conclusion, the jackfruit chips produced by FD-DIC obtained a superior overall quality than the AD-DIC- and FD-dried samples. Considering the relatively high production cost of FD, this novel combination (FD-DIC) could be an alternative method for obtaining high-quality fruit chips or processing valuable agro-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ΔE :

Total color difference

ABTS:

2,2-azino-bis (3-ethylbenz-thiazoline-6-suflfonic acid)

AD:

Hot air-drying

AD-DIC:

Instant controlled pressure drop-assisted hot air-drying

CE:

β-carotene equivalents (μg g−1)

db:

Dry basis moisture content (g 100 g−1)

DPPH:

1,1-diphenyl-2-picryl-hydrazyl

ER:

Expansion ratio

FD:

Freeze drying

FD-DIC:

Instant controlled pressure drop-assisted freeze drying

FRAP:

Ferric reducing/antioxidant power

GAE:

Gallic acid equivalents (mg g−1)

RS:

Reducing sugar content (g 100 g−1)

RR:

Rehydration ratio

TA:

Titritable acidity (%)

TC:

Total carotenoid content (μg g−1)

TE:

Trolox equivalent antioxidant capacity (mM g−1)

TP:

Total phenolic content (mg g−1)

TPTZ:

2,4,6-tripyridyl-s-triazine

TSS:

Total soluble solid (°Brix)

wb:

Wet basis moisture content (g 100 g−1)

References

  • Allaf, T., & Allaf, K. (2014). Instant controlled pressure drop (D.I.C.) in food processing. New York: Springer.

    Book  Google Scholar 

  • Alonzo-Macias, M., Montejano-Gaitan, G., & Allaf, K. (2014). Impact of drying processes on strawberry (Fragaria var. Camarosa) texture: identification of crispy and crunchy features by instrumental measurement. Journal of Texture Studies, 45(3), 246–259.

  • Benzie, I. F. (2000). Evolution of antioxidant defence mechanisms. European Journal of Nutrition, 39(2), 53–61.

    Article  CAS  Google Scholar 

  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.

    Article  CAS  Google Scholar 

  • Bi, J., Wang, X., Chen, Q., Liu, X., Wu, X., Wang, Q., Lv, J., & Yang, A. (2015a). Evaluation indicators of explosion puffing Fuji apple chips quality from different Chinese origins. LWT-Food Science and Technology, 60(2), 1129–1135.

    Article  CAS  Google Scholar 

  • Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., Lv, J., & Wang, X. (2015b). Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT-Food Science and Technology, 60(2), 1136–1142.

    Article  CAS  Google Scholar 

  • Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman, J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111(1), 135–148.

    Article  Google Scholar 

  • Cayuela, J. A. (2008). Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biology and Technology, 47(1), 75–80.

    Article  CAS  Google Scholar 

  • Chowdhury, M., Bala, B. K., & Haque, M. A. (2011). Energy and exergy analysis of the solar drying of jackfruit leather. Biosystems Engineering, 110(2), 222–229.

    Article  Google Scholar 

  • Cui, Z., Xu, S., & Sun, D. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Drying Technology, 22(3), 563–575.

    Article  Google Scholar 

  • Cui, Z., Li, C., Song, C., & Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26(12), 1517–1523.

    Article  CAS  Google Scholar 

  • Dias, M. G., Camões, M. F. G. F., & Oliveira, L. (2014). Carotenoid stability in fruits, vegetables, and working standards—effect of storage temperature and time. Food Chemistry, 156(1), 37–41.

    Article  CAS  Google Scholar 

  • Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Mérillon, J. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768–1774.

  • Fernandes, F. A., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2011). Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163–185.

    Article  Google Scholar 

  • Geidobler, R., & Winter, G. (2013). Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. European Journal of Pharmaceutics and Biopharmaceutics, 85(2), 214–222.

    Article  CAS  Google Scholar 

  • Giovanelli, G., Zanoni, B., Lavelli, V., & Nani, R. (2002). Water sorption, drying, and antioxidant properties of dried tomato products. Journal of Food Engineering, 52(2), 135–141.

    Article  Google Scholar 

  • Giraldo-Zuñiga, A. D., Arévalo-Pinedo, A., Rodrigues, R. M., Lima, C., & Feitosa, A. C. (2006). Kinetic drying experimental data and mathematical model for jackfruit (Artocarpus integrifolia) slices. Ciencia y Tecnologia Alimentaria, 5(2), 89–92.

    Article  Google Scholar 

  • He, X., Liu, J., Cheng, L., & Wang, B. (2013). Quality properties of crispy winter jujube dried by explosion puffing drying. International Journal of Food Engineering, 9(1), 99–106.

    Article  Google Scholar 

  • Hsu, C., Chen, W., Weng, Y., & Tseng, C. (2003). Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry, 83(1), 85–92.

    Article  CAS  Google Scholar 

  • Hu, Q., Zhang, M., Mujumdar, A. S., Xiao, G., & Jin-cai, S. (2006). Drying of edamames by hot air and vacuum microwave combination. Journal of Food Engineering, 77(4), 977–982.

    Article  Google Scholar 

  • Huang, L., Zhang, M., Wang, L., Mujumdar, A. S., & Sun, D. (2012). Influence of combination drying methods on composition, texture, aroma, and microstructure of apple slices. LWT-Food Science and Technology, 47(1), 183–188.

    Article  CAS  Google Scholar 

  • Jagadeesh, S. L., Reddy, B. S., Swamy, G. S. K., Gorbal, K., Hegde, L., & Raghavan, G. S. V. (2007). Chemical composition of jackfruit (Artocarpus heterophyllus Lam.) selections of Western Ghats of India. Food Chemistry, 102(1), 361–365.

    Article  CAS  Google Scholar 

  • Jagtap, U. B., Panaskar, S. N., & Bapat, V. A. (2010). Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp. Plant Foods for Human Nutrition, 65(2), 99–104.

    Article  CAS  Google Scholar 

  • Kozempel, M. F., Sullivan, J. F., Craig, J. C., & Konstance, R. P. (1989). Explosion puffing of fruits and vegetables. Journal of Food Science, 54(3), 772–773.

    Article  Google Scholar 

  • Krokida, M. K., & Maroulis, Z. B. (1997). Effect of drying method on shrinkage and porosity. Drying Technology, 15(10), 2441–2458.

    Article  Google Scholar 

  • Krokida, M. K., Karathanos, V. T., & Maroulis, Z. B. (1998). Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. Journal of Food Engineering, 35(4), 369–380.

    Article  Google Scholar 

  • Krokida, M. K., Maroulis, Z. B., & Saravacos, G. D. (2001). The effect of the method of drying on the colour of dehydrated products. International Journal of Food Science and Technology, 36(1), 53–59.

  • Kumar, C., Karim, M. A., & Joardder, M. U. (2014). Intermittent drying of food products: a critical review. Journal of Food Engineering, 121, 48–57.

    Article  Google Scholar 

  • Kwok, B., Hu, C., Durance, T., & Kitts, D. D. (2004). Dehydration techniques affect phytochemical contents and free radical scavenging activities of Saskatoon berries (Amelanchier alnifolia Nutt.). Journal of Food Science, 69(3), 122–126.

    Google Scholar 

  • Lewicki, P. P. (1998). Effect of pre-drying treatment, drying, and rehydration on plant tissue properties: a review. International Journal of Food Properties, 1(1), 1–22.

    Article  Google Scholar 

  • López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., & Di Scala, K. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning, and firmness of blueberries variety O Neil. Food and Bioprocess Technology, 3(5), 772–777.

    Article  Google Scholar 

  • Maity, T., Bawa, A.S., & Raju, P.S. (2014). Effect of vacuum frying on changes in quality attributes of jackfruit (Artocarpus heterophyllus) bulb slices. International Journal of Food Science, 2014. doi:10.1155/2014/752047

  • Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177–182.

    Article  Google Scholar 

  • McCord, J. M. (2000). The evolution of free radicals and oxidative stress. The American Journal of Medicine, 108(8), 652–659.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  • Moreira, R., Figueiredo, A., & Sereno, A. (2000). Shrinkage of apple disks during drying by warm air convection and freeze drying. Drying Technology, 18(1–2), 279–294.

    Article  Google Scholar 

  • Mounir, S., Allaf, T., Mujumdar, A. S., & Allaf, K. (2012). Swell drying: coupling instant controlled pressure drop DIC to standard convection drying processes to intensify transfer phenomena and improve quality—an overview. Drying Technology, 30(14), 1508–1531.

    Article  CAS  Google Scholar 

  • Prasantha, B. R., & Amunogoda, P. (2013). Moisture adsorption characteristics of solar-dehydrated mango and jackfruit. Food and Bioprocess Technology, 6(7), 1720–1728.

    Article  CAS  Google Scholar 

  • Pua, C. K., Hamid, N. S. A., Tan, C. P., Mirhosseini, H., Rahman, R. B. A., & Rusul, G. (2010). Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology. LWT-Food Science and Technology, 43(2), 343–349.

    Article  CAS  Google Scholar 

  • Rahman, M. S. (2001). Toward prediction of porosity in foods during drying: a brief review. Drying Technology, 19(1), 1–13.

    Article  CAS  Google Scholar 

  • Ratti, C. (2001). Hot air and freeze-drying of high-value foods: a review. Journal of Food Engineering, 49(4), 311–319.

    Article  Google Scholar 

  • Saxena, A., Bawa, A. S., & Raju, P. S. (2009). Phytochemical changes in fresh-cut jackfruit (Artocarpus heterophyllus L.) bulbs during modified atmosphere storage. Food Chemistry, 115(4), 1443–1449.

    Article  CAS  Google Scholar 

  • Saxena, A., Bawa, A. S., & Raju, P. S. (2012a). Effect of minimal processing on quality of jackfruit (Artocarpus heterophyllus L.) bulbs using response surface methodology. Food and Bioprocess Technology, 5(1), 348–358.

    Article  Google Scholar 

  • Saxena, A., Maity, T., Raju, P. S., & Bawa, A. S. (2012b). Degradation kinetics of colour and total carotenoids in jackfruit (Artocarpus heterophyllus) bulb slices during hot air drying. Food and Bioprocess Technology, 5(2), 672–679.

    Article  CAS  Google Scholar 

  • Saxena, A., Saxena, T. M., Raju, P. S., & Bawa, A. S. (2013). Effect of controlled atmosphere storage and chitosan coating on quality of fresh-cut jackfruit bulbs. Food and Bioprocess Technology, 6(8), 2182–2189.

    Article  CAS  Google Scholar 

  • Sidhu, A. S. (2012). Jackfruit improvement in the Asia-Pacific region—a status report. Bangkok, Thailand: Asia-Pacific Association of Agricultural Research Institutions.

    Google Scholar 

  • Swami, S. B., Thakor, N. J., Haldankar, P. M., & Kalse, S. B. (2012). Jackfruit and its many functional components as related to human health: a review. Comprehensive Reviews in Food Science and Food Safety, 11(6), 565–576.

    Article  CAS  Google Scholar 

  • Taib, M. R., Muhamad, I. I., Ngo, C. L., & Ng, P. S. (2013). Drying kinetics, rehydration characteristics and sensory evaluation of microwave vacuum and convective hot air dehydrated jackfruit bulbs. Jurnal Teknologi, 65(1).

  • You, Q., Wang, B., Chen, F., Huang, Z., Wang, X., & Luo, P. G. (2011). Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chemistry, 125(1), 201–208.

    Article  CAS  Google Scholar 

  • Zhao, X., Yang, Z., Gai, G., & Yang, Y. (2009). Effect of superfine grinding on properties of ginger powder. Journal of Food Engineering, 91(2), 217–222.

    Article  Google Scholar 

  • Zou, K., Teng, J., Huang, L., Dai, X., & Wei, B. (2013). Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT-Food Science and Technology, 51(1), 253–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Special Fund for Agro-scientific Research in the Public Interest Program (No. 201303077) of the Chinese Ministry of Agriculture (MOA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Wang, P., Bi, J. et al. Developing Novel Combination Drying Method for Jackfruit Bulb Chips: Instant Controlled Pressure Drop (DIC)-Assisted Freeze Drying. Food Bioprocess Technol 9, 452–462 (2016). https://doi.org/10.1007/s11947-015-1643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1643-4

Keywords

Navigation