Skip to main content
Log in

Hydrothermal growth of wheatear-shaped ZnO microstructures and their photocatalytic activity

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A facile hydrothermal process was developed to synthesize novel wheatear-shaped ZnO microstructures at a low temperature (\(85^{\circ }\hbox {C}\)) without the assistance of any template agent. X-ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the samples. Results showed that the length of the ‘wheatear’ was about \(5.8~\upmu \!\hbox {m}\) and the section width was \(1.2~\upmu \!\hbox {m}\). The particles consisted of closely packed nanorods with average diameter of 100 nm. The growth of wheatear-shaped ZnO is very rapid and can be achieved in only 5 min. \(\hbox {OH}^{-}\)-driven oriented aggregation and multistep nucleation resulted in the formation of wheatear-shaped ZnO microstructures. The product had assembled open structures and it exhibited excellent photocatalytic activity in the degradation of methyl orange under UV-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edalati K, Shakiba A, Vahdati-Khaki J and Zebarjad S M 2016 Mater. Res. Bull. 74 374

    Article  Google Scholar 

  2. Escobedo-Morales A, Téllez-Flores D, Peralta L R, Garcia-Serrano J, Herrera-González A M, Rubio-Rosas E et al 2015 Mater. Chem. Phys. 151 282

  3. Sin J C, Lam S M, Lee K T and Mohamed A R 2015 Mater. Lett. 140 51

    Article  Google Scholar 

  4. Yildirim O A, Liu Y and Petford-Long A K 2015 J. Cryst. Growth 430 34

    Article  Google Scholar 

  5. Pimentel A, Nunes D, Duarte P, Rodrigues J, Costa F M, Monteiro T et al 2014 J. Phys. Chem. C 118 14629

  6. Patil P, Gaikwad G, Patil D R and Naik J 2016 Bull. Mater. Sci. 39 655

    Article  Google Scholar 

  7. Yang M, Sun K and Kotov N A 2010 J. Am. Chem. Soc. 132 1860

    Article  Google Scholar 

  8. Hong Y, Tian C G, Jiang B J, Wu A P, Zhang Q, Tian G Het al 2013 J. Mater. Chem. A 1 5700

  9. Cho S, Jang J W, Lee J S and Lee K H 2010 Langmuir 26 14255

    Article  Google Scholar 

  10. Mujtaba J, Sun H Y, Fang F, Ahmad M and Zhu J 2015 RSC Adv. 5 56232

    Article  Google Scholar 

  11. Khoa N T, Kim S W, Thuan D V, Yoo D H, Kim E J and Hahn S H 2014 CrystEngComm. 16 1344

  12. Fan J C, Li T F and Heng H 2016 Bull. Mater. Sci. 39 19

    Article  Google Scholar 

  13. Boppella R, Anjaneyulu K, Basak P and Manorama S V 2013 J. Phys. Chem. C 117 4597

    Article  Google Scholar 

  14. Chang Z J 2011 Chem. Commun. 47 4427

    Article  Google Scholar 

  15. Yang Y Q, Yang Y Q, Wu H X and Guo S W 2013 CrystEngComm. 15 2608

  16. Wang J, Hou S C, Zhang L Z, Chen J C and Xiang L 2014 CrystEngComm. 16 7115

    Article  Google Scholar 

  17. Ma W Q, Gu Z X, Nan H H, Geng B Y and Zhang X J 2015 CrystEngComm. 17 1121

    Article  Google Scholar 

  18. Jung M H and Chu M J 2014 J. Mater. Chem. C 2 6675

    Article  Google Scholar 

  19. Alenezi M R, Alshammari A S, Jayawardena K D G I, Beliatis M J, Henley S J and Silva S R P 2013 J. Phys. Chem. C 117 17850

    Article  Google Scholar 

  20. Self K, Zhou H J, Greer H F, Tian Z R and Zhou W Z 2013 Chem. Commun. 49 5411

    Article  Google Scholar 

  21. Liu Y X, Wang D S, Peng Q, Chu D R, Liu X W and Li Y D 2011 Inorg. Chem. 50 5841

    Article  Google Scholar 

  22. Wang F, Qin X F, Zhu D D, Meng Y F, Yang L X and Ming Y F 2014 Mater. Lett. 117 131

    Article  Google Scholar 

  23. Srinivasan P, Subramanian B, Djaoued Y, Robichaud J, Sharma T and Bruning R 2015 Mater. Chem. Phys. 155 162

    Article  Google Scholar 

  24. Hirota Y, Elias M S, Dwijaya B, Uchida Y and Nishiyama N 2014 Chem. Lett. 43 360

    Article  Google Scholar 

  25. Shi R X, Yang P, Song X L, Wang J P, Che Q D and Zhang A Y 2016 Appl. Surf. Sci. 366 506

    Article  Google Scholar 

  26. Su Y M, Li J B, Luo Z Z, Lu B and Li P 2016 RSC Adv. 6 7403

    Article  Google Scholar 

  27. Lu H B, Wang S M, Zhao L, Li J C, Dong B H and Xu Z X 2011 J. Mater. Chem. 21 4228

    Article  Google Scholar 

  28. Singh S, Barick K C and Bahadur D 2013 CrystEngComm. 15 4631

  29. Groen J C, Peffer L A A and Pérez-Ramírez J 2003 Microporous Mesoporous Mater. 60 1

    Article  Google Scholar 

  30. Ali T T, Narasimharao K, Parkin I P, Carmalt C J, Sathasivam S, Basahel S N et al 2015 New J. Chem. 39 321

    Article  Google Scholar 

  31. Prakash A and Bahadur D 2014 Phys. Chem. Chem. Phys. 16 21429

    Article  Google Scholar 

  32. Liu Y S, Zhao N Q and Gao W 2013 RSC Adv. 3 21666

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21203052), and the Science Foundation of Hebei Normal University (L2015Z03). We also thank LetPub for its linguistic assistance during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Lu, B. & Luo, Z. Hydrothermal growth of wheatear-shaped ZnO microstructures and their photocatalytic activity. Bull Mater Sci 40, 1069–1074 (2017). https://doi.org/10.1007/s12034-017-1465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1465-2

Keywords

Navigation