Skip to main content
Log in

Population Pharmacokinetics and Pharmacodynamics of Piperacillin/Tazobactam in Patients with Nosocomial Infections

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

The study was to establish a population pharmacokinetic (PPK) model of piperacillin (PIP) and tazobactam (TAZ) that explain pharmacokinetic variability and to propose optimized dosage regimens in patients with nosocomial infections.

Methods

In total, 310 PIP and 280 TAZ concentration–time points were collected at steady state over multiple dosing intervals from 50 patients who received PIP/TAZ infused within 30 min or over 3 h. Drug analysis was performed by high-performance liquid chromatography (HPLC). Nonlinear mixed effects modeling was employed to develop PPK model and 1000 Monte Carlo simulation was used to predict the probability of target attainment (PTA) with a target time of non-protein-bound concentration above MIC > 50 % of the dosing interval.

Results

A model with one-compartment model had the best predictive performance for the PPK model. The population estimates of PIP were 13.8 L/h (31.1 %) for clearance (CL) and 21.7 L (38 %) for volume of distribution (V). The population estimates of TAZ were 9.3 L/h (29.1 %) for CL and 16 L (35.3 %) for V. Influence of creatinine clearance (CLcr) and body weight were identified as important covariates for PIP/TAZ CL and V, respectively. A 30-min infusion of 4 g every 6 h achieved robust (≥90 %) PTAs for MIC ≤ 16 mg/L. As an alternative mode of administration, a 3-h infusion of 4 g every 6 h achieved robust PTAs for Pseudomonas aeruginosa and Klebsiella pneumoniae.

Conclusions

Prolonged infusions achieved better PTAs compared with shorter infusions at similar daily doses. This benefit was most pronounced for MICs between 16 and 40 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang H, Zhang B, Ni Y, Kuti JL, Chen B, Chen M, Nicolau DP. Pharmacodynamic target attainment of seven antimicrobials against Gram-negative bacteria collected from China in 2003 and 2004. Int J Antimicrob Agents. 2007;30(452):457.

    Google Scholar 

  2. Sadaba B, Azanza JR, Campanero MA, Garcia-Quetglas E. Relationship between pharmacokinetics and pharmacodynamics of beta-lactams and outcome. Clin Microbiol Infect. 2004;10(990):998.

    Google Scholar 

  3. Vinks AA, Den Hollander JG, Overbeek SE, Jelliffe RW, Mouton JW. Population pharmacokinetic analysis of nonlinear behavior of piperacillin during intermittent or continuous infusion in patients with cystic fibrosis. Antimicrob Agents Chemother. 2003;47(541):547.

    Google Scholar 

  4. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(31):41.

    Google Scholar 

  5. Shea KM, Cheatham SC, Wack MF, Smith DW, Sowinski KM, Kays MB. Steady-state pharmacokinetics and pharmacodynamics of piperacillin/tazobactam administered by prolonged infusion in hospitalised patients. Int J Antimicrob Agents. 2009;34(429):433.

    Google Scholar 

  6. Di Giovamberardino G, Ferrannini M, Testore GP, Federici G, Pastore A. High performance liquid chromatographic determination of plasma free and total tazobactam and piperacillin. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(86):88.

    Google Scholar 

  7. Wahlby U, Jonsson EN, Karlsson MO. Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn. 2001;28(231):252.

    Google Scholar 

  8. Arzuaga A, Maynar J, Gascon AR, Isla A, Corral E, Fonseca F, Sanchez-Izquierdo JA, Rello J, Canut A, Pedraz JL. Influence of renal function on the pharmacokinetics of piperacillin/tazobactam in intensive care unit patients during continuous venovenous hemofiltration. J Clin Pharmacol. 2005;45(168):176.

    Google Scholar 

  9. Asin-Prieto E, Rodriguez-Gascon A, Troconiz IF, Soraluce A, Maynar J, Sanchez-Izquierdo JA, Isla A. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother. 2014;69(180):189.

    Google Scholar 

  10. Li C, Kuti JL, Nightingale CH, Mansfield DL, Dana A, Nicolau DP. Population pharmacokinetics and pharmacodynamics of piperacillin/tazobactam in patients with complicated intra-abdominal infection. J Antimicrob Chemother. 2005;56(388):395.

    Google Scholar 

  11. Li Z, Chen Y, Li Q, Cao D, Shi W, Cao Y, Wu D, Zhu Y, Wang Y, Chen C. Population pharmacokinetics of piperacillin/tazobactam in neonates and young infants. Eur J Clin Pharmacol. 2013;69(1223):1233.

    Google Scholar 

  12. Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59(19):29.

    Google Scholar 

  13. Sorgel F, Kinzig M. The chemistry, pharmacokinetics and tissue distribution of piperacillin/tazobactam. J Antimicrob Chemother. 1993;31(Suppl A):39–60.

    Article  PubMed  Google Scholar 

  14. Bauer SR, Salem C, Connor MJ Jr, Groszek J, Taylor ME, Wei P, Tolwani AJ, Fissell WH. Pharmacokinetics and pharmacodynamics of piperacillin–tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol. 2012;7(452):457.

    Google Scholar 

  15. Cheatham SC, Fleming MR, Healy DP, Chung CE, Shea KM, Humphrey ML, Kays MB. Steady-state pharmacokinetics and pharmacodynamics of piperacillin and tazobactam administered by prolonged infusion in obese patients. Int J Antimicrob Agents. 2013;41(52):56.

    Google Scholar 

  16. Butterfield JM, Lodise TP, Beegle S, Rosen J, Farkas J, Pai MP. Pharmacokinetics and pharmacodynamics of extended-infusion piperacillin/tazobactam in adult patients with cystic fibrosis-related acute pulmonary exacerbations. J Antimicrob Chemother. 2014;69(176):179.

    Google Scholar 

  17. Kim MK, Xuan D, Quintiliani R, Nightingale CH, Nicolau DP. Pharmacokinetic and pharmacodynamic profile of high dose extended interval piperacillin–tazobactam. J Antimicrob Chemother. 2001;48(259):267.

    Google Scholar 

  18. Masterton RG, Kuti JL, Turner PJ, Nicolau DP. The OPTAMA programme: utilizing MYSTIC (2002) to predict critical pharmacodynamic target attainment against nosocomial pathogens in Europe. J Antimicrob Chemother. 2005;55(71):77.

    Google Scholar 

  19. Ambrose PG, Bhavnani SM, Jones RN. Pharmacokinetics–pharmacodynamics of cefepime and piperacillin–tazobactam against Escherichia coli and Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases: report from the ARREST program. Antimicrob Agents Chemother. 2003;47(1643):1646.

    Google Scholar 

  20. Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44(357):363.

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Qian, Q., Sun, Mr. et al. Population Pharmacokinetics and Pharmacodynamics of Piperacillin/Tazobactam in Patients with Nosocomial Infections. Eur J Drug Metab Pharmacokinet 41, 363–372 (2016). https://doi.org/10.1007/s13318-015-0276-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-015-0276-3

Keywords

Navigation