Skip to main content

Advertisement

Log in

Anti-inflammatory cytokines in endometriosis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Although the pathogenesis of endometriosis is not fully understood, it is often considered to be an inflammatory disease. An increasing number of studies suggest that differential expression of anti-inflammatory cytokines (e.g., interleukin-4 and -10, and transforming growth factor-β1) occurs in women with endometriosis, including in serum, peritoneal fluid and ectopic lesions. These anti-inflammatory cytokines also have indispensable roles in the progression of endometriosis, including by promoting survival, growth, invasion, differentiation, angiogenesis, and immune escape of the endometriotic lesions. In this review, we provide an overview of the expression, origin, function and regulation of anti-inflammatory cytokines in endometriosis, with brief discussion and perspectives on their future clinical implications in the diagnosis and therapy of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Giudice L, Kao L (2004) Endometriosis. Lancet 364(9447):1789–1799. https://doi.org/10.1016/S0140-6736(04)17403-5

    Article  PubMed  Google Scholar 

  2. Culley L, Law C, Hudson N et al (2013) The social and psychological impact of endometriosis on women’s lives: a critical narrative review. Hum Reprod Update 19(6):625–639. https://doi.org/10.1093/humupd/dmt027

    Article  PubMed  Google Scholar 

  3. Guo SW (2009) Recurrence of endometriosis and its control. Hum Reprod Update 15(4):441–461. https://doi.org/10.1093/humupd/dmp007

    Article  PubMed  Google Scholar 

  4. Simpson PD, McLaren JS, Rymer J et al (2015) Minimising menopausal side effects whilst treating endometriosis and fibroids. Post Reprod Health 21(1):16–23. https://doi.org/10.1177/2053369114568440

    Article  PubMed  Google Scholar 

  5. Simoens S, Hummelshoj L, D’Hooghe T (2007) Endometriosis: cost estimates and methodological perspective. Hum Reprod Update 13(4):395–404. https://doi.org/10.1093/humupd/dmm010

    Article  CAS  PubMed  Google Scholar 

  6. De Graaff AA, D’Hooghe TM, Dunselman GA et al (2013) The significant effect of endometriosis on physical, mental and social wellbeing: results from an international crosssectional survey. Hum Reprod 28(10):2677–2685. https://doi.org/10.1093/humrep/det284

    Article  PubMed  Google Scholar 

  7. Mori H, Sawairi M, Nakagawa M et al (1991) Peritoneal fluid interleukin-1 beta and tumor necrosis factor in patients with benign gynecologic disease. Am J Reprod Immunol 26(2):62–67

    Article  CAS  PubMed  Google Scholar 

  8. Rier SE, Zarmakoupis PN, Hu X et al (1995) Dysregulation of interleukin-6 responses in ectopic endometrial stromal cells: correlation with decreased soluble receptor levels in peritoneal fluid of women with endometriosis. J Clin Endocrinol Metab 80(4):1431–1437. https://doi.org/10.1210/jcem.80.4.7714120

    Article  CAS  PubMed  Google Scholar 

  9. Hirata T, Osuga Y, Hamasaki K et al (2008) Interleukin (IL)-17A stimulates IL-8 secretion, cyclooxygensase-2 expression, and cell proliferation of endometriotic stromal cells. Endocrinology 149(3):1260–1267. https://doi.org/10.1210/en.2007-0749

    Article  CAS  PubMed  Google Scholar 

  10. Milewski Ł, Barcz E, Dziunycz P et al (2008) Association of leptin with inflammatory cytokines and lymphocyte subpopulations in peritoneal fluid of patients with endometriosis. J Reprod Immunol 79(1):111–117. https://doi.org/10.1016/j.jri.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  11. Carmona F, Chapron C, Martinez-Zamora MA et al (2012) Ovarian endometrioma but not deep infiltrating endometriosis is associated with increased serum levels of interleukin-8 and interleukin-6. J Reprod Immunol 95(1–2):80–86. https://doi.org/10.1016/j.jri.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  12. Ahn SH, Edwards AK, Singh SS et al (2015) IL-17A contributes to the pathogenesis of endometriosis by triggering proinflammatory cytokines and angiogenic growth factors. J Immunol 195(6):2591–2600. https://doi.org/10.4049/jimmunol.1501138

    Article  CAS  PubMed  Google Scholar 

  13. Luisi S, Pinzauti S, Regini C et al (2015) Serum markers for the noninvasive diagnosis of endometriosis. Womens Health (Lond) 11(5):603–610. https://doi.org/10.2217/whe.15.46

    Article  CAS  Google Scholar 

  14. Malutan AM, Drugan T, Costin N et al (2015) Pro-inflammatory cytokines for evaluation of inflammatory status in endometriosis. Cent Eur J Immunol 40(1):96–102. https://doi.org/10.5114/ceji.2015.50840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sikora J, Mielczarek-Palacz A, Kondera-Anasz Z et al (2015) Peripheral blood proinflammatory response in women during menstrual cycle and endometriosis. Cytokine 76(2):117–122. https://doi.org/10.1016/j.cyto.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  16. Gogacz M, Winkler I, Bojarska-Junak A et al (2016) Increased percentage of Th17 cells in peritoneal fluid is associated with severity of endometriosis. J Reprod Immunol 117:39–44. https://doi.org/10.1016/j.jri.2016.04.289

    Article  CAS  PubMed  Google Scholar 

  17. Christodoulakos G, Augoulea A, Lambrinoudaki I et al (2007) Pathogenesis of endometriosis: the role of defective ‘immunosurveillance’. Eur J Contracept Reprod Health Care 12(3):194–202. https://doi.org/10.1080/13625180701387266

    Article  CAS  PubMed  Google Scholar 

  18. Jiang L, Yan Y, Liu Z et al (2016) Inflammation and endometriosis. Front Biosci (Landmark Ed) 21:941–948

    Article  CAS  Google Scholar 

  19. Riccio LDGC, Santulli P, Marcellin L et al (2018) Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol 50:39–49. https://doi.org/10.1016/j.bpobgyn.2018.01.010

    Article  PubMed  Google Scholar 

  20. Martínez S, Garrido N, Coperias JL et al (2007) Serum interleukin-6 levels are elevated in women with minimal-mild endometriosis. Hum Reprod 22(3):836–842. https://doi.org/10.1093/humrep/del419

    Article  CAS  PubMed  Google Scholar 

  21. May KE, Conduit-Hulbert SA, Villar J et al (2010) Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update 16(6):651–674. https://doi.org/10.1093/humupd/dmq009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mihalyi A, Gevaert O, Kyama CM et al (2010) Non-invasive diagnosis of endometriosis based on a combined analysis of six plasma biomarkers. Hum Reprod 25(3):654–664. https://doi.org/10.1093/humrep/dep425

    Article  CAS  PubMed  Google Scholar 

  23. Falconer H, Mwenda JM, Chai DC et al (2006) Treatment with anti-TNF monoclonal antibody (c5N) reduces the extent of induced endometriosis in the baboon. Hum Reprod 21(7):1856–1862. https://doi.org/10.1093/humrep/del044

    Article  CAS  PubMed  Google Scholar 

  24. Altintas D, Kokcu A, Tosun M et al (2008) Efficacy of recombinant human interferon alpha-2b on experimental endometriosis. Eur J Obstet Gynecol Reprod Biol 139(1):95–99. https://doi.org/10.1016/j.ejogrb.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  25. Jerzak M, Niemiec T, Nowakowska A et al (2010) First successful pregnancy after addition of enoxaparin to sildenafil and etanercept immunotherapy in woman with fifteen failed IVF cycles—case report. Am J Reprod Immunol 64(2):93–96. https://doi.org/10.1111/j.1600-0897.2010.00826.x

    Article  CAS  PubMed  Google Scholar 

  26. Islimye M, Kilic S, Zulfikaroglu E et al (2011) Regression of endometrial autografts in a rat model of endometriosis treated with etanercept. Eur J Obstet Gynecol Reprod Biol 159(1):184–189. https://doi.org/10.1016/j.ejogrb.2011.06.029

    Article  CAS  PubMed  Google Scholar 

  27. Zulfikaroglu E, Kılıc S, Islimye M et al (2011) Efficacy of anti-tumor necrosis factor therapy on endometriosis in an experimental rat model. Arch Gynecol Obstet 283(4):799–804. https://doi.org/10.1007/s00404-010-1434-0

    Article  CAS  PubMed  Google Scholar 

  28. Soares SR, Martínez-Varea A, Hidalgo-Mora JJ et al (2012) Pharmacologic therapies in endometriosis: a systematic review. Fertil Steril 98(3):529–555. https://doi.org/10.1016/j.fertnstert.2012.07.1120

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Sun L, Hou Z et al (2016) rhTNFR: Fc suppresses the development of endometriosis in a mouse model by downregulating cell proliferation and invasiveness. Reprod Sci 23(7):847–857. https://doi.org/10.1177/1933719115620495

    Article  CAS  PubMed  Google Scholar 

  30. Koninckx PR, Craessaerts M, Timmerman D et al (2008) Anti-TNF-alpha treatment for deep endometriosis-associated pain: a randomized placebo-controlled trial. Hum Reprod 23(9):2017–2023. https://doi.org/10.1093/humrep/den177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu D, Song H, Shi G (2013) Anti-TNF-α treatment for pelvic pain associated with endometriosis. Cochrane Database Syst Rev 28(3):CD008088. https://doi.org/10.1002/14651858.CD008088.pub3

    Article  Google Scholar 

  32. Ahn SH, Singh V, Tayade C (2017) Biomarkers in endometriosis: challenges and opportunities. Fertil Steril 107(3):523–532. https://doi.org/10.1016/j.fertnstert.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  33. Rocha AL, Vieira EL, Maia LM et al (2016) Prospective evaluation of a panel of plasma cytokines and chemokines as potential markers of pelvic endometriosis in symptomatic women. Gynecol Obstet Investig 81(6):512–517. https://doi.org/10.1159/000443956

    Article  CAS  Google Scholar 

  34. Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172

    Article  CAS  PubMed  Google Scholar 

  35. Punnonen J, Teisala K, Ranta H et al (1996) Increased levels of interleukin-6 and interleukin-10 in the peritoneal fluid of patients with endometriosis. Am J Obstet Gynecol 174(5):1522–1526

    Article  CAS  PubMed  Google Scholar 

  36. Ho HN, Wu MY, Chao KH et al (1997) Peritoneal interleukin-10 increases with decrease in activated CD4+ T lymphocytes in women with endometriosis. Hum Reprod 12(11):2528–2533

    Article  CAS  PubMed  Google Scholar 

  37. Hsu CC, Yang BC, Wu MH et al (1997) Enhanced interleukin-4 expression in patients with endometriosis. Fertil Steril 67(6):1059–1064

    Article  CAS  PubMed  Google Scholar 

  38. Antsiferova YS, Sotnikova NY, Posiseeva LV et al (2005) Changes in the T-helper cytokine profile and in lymphocyte activation at the systemic and local levels in women with endometriosis. Fertil Steril 84(6):1705–1711. https://doi.org/10.1016/j.fertnstert.2005.05.066

    Article  CAS  PubMed  Google Scholar 

  39. Podgaec S, Abrao MS, Dias JA Jr et al (2007) Endometriosis: an inflammatory disease with a Th2 immune response component. Hum Reprod 22(5):1373–1379. https://doi.org/10.1093/humrep/del516

    Article  CAS  PubMed  Google Scholar 

  40. Maluţan AM, Drugan T, Ciortea R et al (2015) Serum anti-inflammatory cytokines for the evaluation of inflammatory status in endometriosis. J Res Med Sci 20(7):668–674. https://doi.org/10.4103/1735-1995.166215

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malutan AM, Drugan C, Drugan T et al (2016) The association between interleukin-4 -590C/T genetic polymorphism, IL-4 serum level, and advanced endometriosis. Cent Eur J Immunol 41(2):176–181. https://doi.org/10.5114/ceji.2016.60992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suen JL, Chang Y, Chiu PR et al (2014) Serum level of IL-10 is increased in patients with endometriosis, and IL-10 promotes the growth of lesions in a murine model. Am J Pathol 184(2):464–471. https://doi.org/10.1016/j.ajpath.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  43. Malutan AM, Drugan C, Walch K et al (2017) The association between interleukin-10 (IL-10) -592C/A, -819T/C, -1082G/A promoter polymorphisms and endometriosis. Arch Gynecol Obstet 295(2):503–510. https://doi.org/10.1007/s00404-016-4269-5

    Article  CAS  PubMed  Google Scholar 

  44. Fan YY, Chen HY, Chen W et al (2018) Expression of inflammatory cytokines in serum and peritoneal fluid from patients with different stages of endometriosis. Gynecol Endocrinol 34(6):507–512. https://doi.org/10.1080/09513590.2017.1409717

    Article  CAS  PubMed  Google Scholar 

  45. Gueuvoghlanian-Silva BY, Bellelis P, Barbeiro DF et al (2018) Treg and NK cells related cytokines are associated with deep rectosigmoid endometriosis and clinical symptoms related to the disease. J Reprod Immunol 126:32–38. https://doi.org/10.1016/j.jri.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  46. Sikora J, Smycz-Kubańska M, Mielczarek-Palacz A et al (2018) The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis. Immunol Lett 201:31–37. https://doi.org/10.1016/j.imlet.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  47. Drosdzol-Cop A, Skrzypulec-Plinta V, Stojko R (2012) Serum and peritoneal fluid immunological markers in adolescent girls with chronic pelvic pain. Obstet Gynecol Surv 67(6):374–381. https://doi.org/10.1097/OGX.0b013e31825cb12b

    Article  PubMed  Google Scholar 

  48. Chang KK, Liu LB, Jin LP et al (2017) IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis 8(3):e2666. https://doi.org/10.1038/cddis.2017.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mier-Cabrera J, Jiménez-Zamudio L, García-Latorre E et al (2011) Quantitative and qualitative peritoneal immune profiles, T-cell apoptosis and oxidative stress-associated characteristics in women with minimal and mild endometriosis. BJOG 118(1):6–16. https://doi.org/10.1111/j.1471-0528.2010.02777.x

    Article  CAS  PubMed  Google Scholar 

  50. Tabibzadeh S, Becker JL, Parsons AK (2003) Endometriosis is associated with alterations in the relative abundance of proteins and IL-10 in the peritoneal fluid. Front Biosci 8:a70–a78

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Hei P, Deng L et al (2007) Interleukin-10 gene promoter polymorphisms and their protein production in peritoneal fluid in patients with endometriosis. Mol Hum Reprod 13(2):135–140. https://doi.org/10.1093/molehr/gal106

    Article  CAS  PubMed  Google Scholar 

  52. Podgaec S, Dias Junior JA, Chapron C et al (2010) Th1 and Th2 ummune responses related to pelvic endometriosis. Rev Assoc Med Bras (1992) 56(1):92–98

    Article  Google Scholar 

  53. Wickiewicz D, Chrobak A, Gmyrek GB et al (2013) Diagnostic accuracy of interleukin-6 levels in peritoneal fluid for detection of endometriosis. Arch Gynecol Obstet 288(4):805–814. https://doi.org/10.1007/s00404-013-2828-6

    Article  CAS  PubMed  Google Scholar 

  54. Li MQ, Wang Y, Chang KK et al (2014) CD4+Foxp3+ regulatory T cell differentiation mediated by endometrial stromal cell-derived TECK promotes the growth and invasion of endometriotic lesions. Cell Death Dis 5:e1436. https://doi.org/10.1038/cddis.2014.414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jaeger-Lansky A, Schmidthaler K, Kuessel L et al (2018) Local and systemic levels of cytokines and danger signals in endometriosis-affected women. J Reprod Immunol 130:7–10. https://doi.org/10.1016/j.jri.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  56. Hassa H, Tanir HM, Tekin B et al (2009) Cytokine and immune cell levels in peritoneal fluid and peripheral blood of women with early- and late-staged endometriosis. Arch Gynecol Obstet 279(6):891–895. https://doi.org/10.1007/s00404-008-0844-8

    Article  CAS  PubMed  Google Scholar 

  57. Andreoli CG, Genro VK, Souza CA et al (2011) T helper (Th)1, Th2, and Th17 interleukin pathways in infertile patients with minimal/mild endometriosis. Fertil Steril 95(8):2477–2480. https://doi.org/10.1016/j.fertnstert.2011.02.019

    Article  CAS  PubMed  Google Scholar 

  58. Jiang J, Jiang Z, Xue M (2019) Serum and peritoneal fluid levels of interleukin-6 and interleukin-37 as biomarkers for endometriosis. Gynecol Endocrinol 11:1–5. https://doi.org/10.1080/09513590.2018.1554034

    Article  CAS  Google Scholar 

  59. Xie J, Wang S, He B et al (2009) Association of estrogen receptor alpha and interleukin-10 gene polymorphisms with endometriosis in a Chinese population. Fertil Steril 92(1):54–60. https://doi.org/10.1016/j.fertnstert.2008.04.069

    Article  CAS  PubMed  Google Scholar 

  60. Wynn TA (2003) IL-13 effector functions. Annu Rev Immunol 21:425–456. https://doi.org/10.1146/annurev.immunol.21.120601.141142

    Article  CAS  PubMed  Google Scholar 

  61. Chegini N, Roberts M, Ripps B (2003) Differential expression of interleukins (IL)-13 and IL-15 in ectopic and eutopic endometrium of women with endometriosis and normal fertile women. Am J Reprod Immunol 49(2):75–83

    Article  PubMed  Google Scholar 

  62. Lee YH, Cui L, Fang J et al (2016) Limited value of pro-inflammatory oxylipins and cytokines as circulating biomarkers in endometriosis—a targeted ‘omics study. Sci Rep 6:26117. https://doi.org/10.1038/srep26117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jørgensen H, Hill AS, Beste MT et al (2017) Peritoneal fluid cytokines related to endometriosis in patients evaluated for infertility. Fertil Steril 107(5):1191. https://doi.org/10.1016/j.fertnstert.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  64. Han G, Li F, Singh TP et al (2012) The pro-inflammatory role of TGFβ1: a paradox? Int J Biol Sci 8(2):228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shull MM, Ormsby I, Kier AB et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699. https://doi.org/10.1038/359693a0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li MO, Wan YY, Sanjabi S et al (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146. https://doi.org/10.1146/annurev.immunol.24.021605.090737

    Article  CAS  PubMed  Google Scholar 

  67. Lee HJ, Kim H, Ku SY et al (2011) Transforming growth factor-β1 gene polymorphisms in Korean women with endometriosis. Am J Reprod Immunol 66(5):428–434. https://doi.org/10.1111/j.1600-0897.2011.01009.x

    Article  CAS  PubMed  Google Scholar 

  68. Komiyama S, Aoki D, Komiyama M et al (2007) Local activation of TGF-beta1 at endometriosis sites. J Reprod Med 52(4):306–312

    CAS  PubMed  Google Scholar 

  69. Meng Q, Sun W, Jiang J et al (2011) Identification of common mechanisms between endometriosis and ovarian cancer. J Assist Reprod Genet 28(10):917–923. https://doi.org/10.1007/s10815-011-9573-1

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yu YX, Xiu YL, Chen X et al (2017) Transforming growth factor-beta 1 involved in the pathogenesis of endometriosis through regulating expression of vascular endothelial growth factor under hypoxia. Chin Med J (Engl) 130(8):950–956. https://doi.org/10.4103/0366-6999.204112

    Article  Google Scholar 

  71. Shi LB, Zhou F, Zhu HY et al (2017) Transforming growth factor beta1 from endometriomas promotes fibrosis in surrounding ovarian tissues via Smad2/3 signaling. Biol Reprod 97(6):873–882. https://doi.org/10.1093/biolre/iox140

    Article  PubMed  Google Scholar 

  72. Choi HJ, Park MJ, Kim BS et al (2017) Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression. BMB Rep 50(8):429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cai X, Shen M, Liu X et al (2018) Reduced expression of eukaryotic translation initiation factor 3 subunit e and its possible involvement in the epithelial-mesenchymal transition in endometriosis. Reprod Sci 25(1):102–109. https://doi.org/10.1177/1933719117702248

    Article  CAS  PubMed  Google Scholar 

  74. Podgaec S, Rizzo LV, Fernandes LF et al (2012) CD4(+) CD25(high) Foxp3(+) cells increased in the peritoneal fluid of patients with endometriosis. Am J Reprod Immunol 68(4):301–308. https://doi.org/10.1111/j.1600-0897.2012.01173.x

    Article  CAS  PubMed  Google Scholar 

  75. Young VJ, Brown JK, Maybin J et al (2014) Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab 99(9):3450–3459. https://doi.org/10.1210/jc.2014-1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Young VJ, Brown JK, Saunders PT et al (2014) The peritoneum is both a source and target of TGF-β in women with endometriosis. PLoS One 9(9):e106773. https://doi.org/10.1371/journal.pone.0106773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hanada T, Tsuji S, Nakayama M et al (2018) Suppressive regulatory T cells and latent transforming growth factor-β-expressing macrophages are altered in the peritoneal fluid of patients with endometriosis. Reprod Biol Endocrinol 16(1):9. https://doi.org/10.1186/s12958-018-0325-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaiko GE, Phipps S, Angkasekwinai P et al (2010) NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25. J Immunol 185(8):4681–4690. https://doi.org/10.4049/jimmunol.1001758

    Article  CAS  PubMed  Google Scholar 

  79. Gregory LG, Mathie SA, Walker SA et al (2010) Overexpression of Smad2 drives house dust mite-mediated airway remodeling and airway hyperresponsiveness via activin and IL-25. Am J Respir Crit Care Med 182(2):143–154. https://doi.org/10.1164/rccm.200905-0725OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Wang Y, Li MQ et al (2018) IL-25 promotes Th2 bias by upregulating IL-4 and IL-10 expression of decidual γδT cells in early pregnancy. Exp Ther Med 15(2):1855–1862. https://doi.org/10.3892/etm.2017.5638

    Article  CAS  PubMed  Google Scholar 

  81. Rank MA, Kobayashi T, Kozaki H et al (2009) IL-33-activated dendritic cells induce an atypical TH2-type response. J Allergy Clin Immunol 123(5):1047–1054. https://doi.org/10.1016/j.jaci.2009.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hu WT, Huang LL, Li MQ et al (2015) Decidual stromal cell-derived IL-33 contributes to Th2 bias and inhibits decidual NK cell cytotoxicity through NF-κB signaling in human early pregnancy. J Reprod Immunol 109:52–65. https://doi.org/10.1016/j.jri.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  83. Guo PF, Du MR, Wu HX et al (2010) Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans. Blood 16(12):2061–2069. https://doi.org/10.1182/blood-2009-11-252940

    Article  CAS  Google Scholar 

  84. Xie F, Liu LB, Shang WQ et al (2015) The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell. Cancer Lett 364(2):106–117. https://doi.org/10.1016/j.canlet.2015.04.029

    Article  CAS  PubMed  Google Scholar 

  85. Pattarini L, Trichot C, Bogiatzi S et al (2017) TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J Exp Med 214(5):1529–1546. https://doi.org/10.1084/jem.20150402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ochiai S, Jagot F, Kyle RL et al (2018) Thymic stromal lymphopoietin drives the development of IL-13+ Th2 cells. Proc Natl Acad Sci USA 115(5):1033–1038. https://doi.org/10.1073/pnas.1714348115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saenz SA, Siracusa MC, Perrigoue JG et al (2010) IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464(7293):1362–1366. https://doi.org/10.1038/nature08901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mjösberg JM, Trifari S, Crellin NK et al (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12(11):1055–1062. https://doi.org/10.1038/ni.2104

    Article  CAS  PubMed  Google Scholar 

  89. Han M, Rajput C, Hong JY et al (2017) The innate cytokines IL-25, IL-33, and TSLP cooperate in the induction of type 2 innate lymphoid cell expansion and mucous metaplasia in rhinovirus-infected immature mice. J Immunol 199(4):1308–1318. https://doi.org/10.4049/jimmunol.1700216

    Article  CAS  PubMed  Google Scholar 

  90. Halim TY, Krauss RH, Sun AC et al (2012) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36(3):451–463. https://doi.org/10.1016/j.immuni.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  91. Matalliotakis I, Cakmak H, Matalliotakis M et al (2012) High rate of allergies among women with endometriosis. J Obstet Gynaecol 32(3):291–293. https://doi.org/10.3109/01443615.2011.644358

    Article  CAS  PubMed  Google Scholar 

  92. Bungum HF, Vestergaard C, Knudsen UB (2014) Endometriosis and type 1 allergies/immediate type hypersensitivity: a systematic review. Eur J Obstet Gynecol Reprod Biol 179:209–215. https://doi.org/10.1016/j.ejogrb.2014.04.025

    Article  PubMed  Google Scholar 

  93. Santulli P, Borghese B, Chouzenoux S et al (2012) Serum and peritoneal interleukin-33 levels are elevated in deeply infiltrating endometriosis. Hum Reprod 27(7):2001–2009. https://doi.org/10.1093/humrep/des154

    Article  CAS  PubMed  Google Scholar 

  94. Urata Y, Osuga Y, Izumi G et al (2012) Interleukin-1β stimulates the secretion of thymic stromal lymphopoietin (TSLP) from endometrioma stromal cells: possible involvement of TSLP in endometriosis. Hum Reprod 27(10):3028–3035. https://doi.org/10.1093/humrep/des291

    Article  CAS  PubMed  Google Scholar 

  95. Mbarik M, Kaabachi W, Henidi B et al (2015) Soluble ST2 and IL-33: Potential markers of endometriosis in the Tunisian population. Immunol Lett 166(1):1–5. https://doi.org/10.1016/j.imlet.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  96. Miller JE, Monsanto SP, Ahn SH et al (2017) Interleukin-33 modulates inflammation in endometriosis. Sci Rep 7(1):17903. https://doi.org/10.1038/s41598-017-18224-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bungum HF, Nygaard U, Vestergaard C et al (2016) Increased IL-25 levels in the peritoneal fluid of patients with endometriosis. J Reprod Immunol 114:6–9. https://doi.org/10.1016/j.jri.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  98. Kondera-Anasz Z, Sikora J, Mielczarek-Palacz A et al (2005) Concentrations of interleukin (IL)-1alpha, IL-1 soluble receptor type II (IL-1 sRII) and IL-1 receptor antagonist (IL-1 Ra) in the peritoneal fluid and serum of infertile women with endometriosis. Eur J Obstet Gynecol Reprod Biol 123(2):198–203. https://doi.org/10.1016/j.ejogrb.2005.04.019

    Article  CAS  PubMed  Google Scholar 

  99. Zhang X, Wen J, Deng L et al (2007) Decreased levels of peritoneal interleukin-1 receptor antagonist in patients with endometriosis and disease-related dysmenorrhea. Fertil Steril 88(3):594–599. https://doi.org/10.1016/j.fertnstert.2006.11.155

    Article  CAS  PubMed  Google Scholar 

  100. Nold MF, Nold-Petry CA, Zepp JA et al (2010) IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 11(11):1014–1022. https://doi.org/10.1038/ni.1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bulau AM, Nold MF, Li S, Nold-Petry CA et al (2014) Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. Proc Natl Acad Sci USA 111(7):2650–2655. https://doi.org/10.1073/pnas.1324140111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xie Y, Li Y, Cai X et al (2016) Interleukin-37 suppresses ICAM-1 expression in parallel with NF-κB down-regulation following TLR2 activation of human coronary artery endothelial cells. Int Immunopharmacol 38:26–30. https://doi.org/10.1016/j.intimp.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  103. Jiang JF, Deng Y, Xue W et al (2016) Increased expression of interleukin 37 in the eutopic and ectopic endometrium of patients with ovarian endometriosis. Reprod Sci 23(2):244–248. https://doi.org/10.1177/1933719115602775

    Article  CAS  PubMed  Google Scholar 

  104. Kaabachi W, Kacem O, Belhaj R et al (2017) Interleukin-37 in endometriosis. Immunol Lett 185:52–55. https://doi.org/10.1016/j.imlet.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  105. Pizzo A, Salmeri FM, Ardita FV et al (2002) Behaviour of cytokine levels in serum and peritoneal fluid of women with endometriosis. Gynecol Obstet Investig 54(2):82–87. https://doi.org/10.1159/000067717

    Article  CAS  Google Scholar 

  106. Laganà AS, Vitale SG, Salmeri FM et al (2017) Unus pro omnibus, omnes pro uno: a novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med Hypotheses 103:10–20. https://doi.org/10.1016/j.mehy.2017.03.032

    Article  CAS  PubMed  Google Scholar 

  107. Paul Dmowski W, Braun DP (2004) Immunology of endometriosis. Best Pract Res Clin Obstet Gynaecol 18(2):245–263. https://doi.org/10.1016/j.bpobgyn.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  108. Bos PD, Plitas G, Rudra D et al (2013) Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 210(11):2435–2466. https://doi.org/10.1084/jem.20130762

    Article  PubMed  PubMed Central  Google Scholar 

  109. Qiao YC, Pan YH, Ling W et al (2017) The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease. Autoimmun Rev 16(10):1058–1070. https://doi.org/10.1016/j.autrev.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  110. Pereira LMS, Gomes STM, Ishak R et al (2017) Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front Immunol 8:605. https://doi.org/10.3389/fimmu.2017.00605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Basta P, Majka M, Jozwicki W et al (2010) The frequency of CD25+CD4+ and FOXP3+ regulatory T cells in ectopic endometrium and ectopic decidua. Reprod Biol Endocrinol 8:116. https://doi.org/10.1186/1477-7827-8-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Olkowska-Truchanowicz J, Bocian K, Maksym RB et al (2013) CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood and peritoneal fluid of patients with endometriosis. Hum Reprod 28(1):119–124. https://doi.org/10.1093/humrep/des346

    Article  CAS  PubMed  Google Scholar 

  113. Wei C, Mei J, Tang L et al (2016) 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis 7(12):e2489. https://doi.org/10.1038/cddis.2016.375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gazvani R, Templeton A (2002) Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction 123(2):217–226

    Article  CAS  PubMed  Google Scholar 

  115. Oral E, Olive DL, Arici A (1996) The peritoneal environment in endometriosis. Hum Reprod Update 2(5):385–398

    Article  CAS  PubMed  Google Scholar 

  116. Wu MY, Ho HN, Chen SU et al (1999) Increase in the production of interleukin-6, interleukin-10, and interleukin-12 by lipopolysaccharide-stimulated peritoneal macrophages from women with endometriosis. Am J Reprod Immunol 41(1):106–111

    Article  CAS  PubMed  Google Scholar 

  117. Wang XQ, Yu J, Luo XZ et al (2010) The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis. J Mol Endocrinol 45(5):291–299. https://doi.org/10.1677/JME-09-0177

    Article  CAS  PubMed  Google Scholar 

  118. Mei J, Xie XX, Li MQ et al (2014) Indoleamine 2,3-dioxygenase-1 (IDO1) in human endometrial stromal cells induces macrophage tolerance through interleukin-33 in the progression of endometriosis. Int J Clin Exp Pathol 7(6):2743–2757

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang HL, Zhou WJ, Chang KK et al (2017) The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction 154(6):815–825. https://doi.org/10.1530/REP-17-0342

    Article  CAS  PubMed  Google Scholar 

  120. Wang XQ, Zhou WJ, Luo XZ et al (2017) Synergistic effect of regulatory T cells and proinflammatory cytokines in angiogenesis in the endometriotic milieu. Hum Reprod 32(6):1304–1317. https://doi.org/10.1093/humrep/dex067

    Article  CAS  PubMed  Google Scholar 

  121. Sugamata M, Ihara T, Uchiide I (2005) Increase of activated mast cells in human endometriosis. Am J Reprod Immunol 53(3):120–125. https://doi.org/10.1111/j.1600-0897.2005.00254.x

    Article  PubMed  Google Scholar 

  122. Berbic M, Fraser IS (2011) Regulatory T cells and other leukocytes in the pathogenesis of endometriosis. J Reprod Immunol 88(2):149–155. https://doi.org/10.1016/j.jri.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  123. Menzies FM, Shepherd MC, Nibbs RJ et al (2011) The role of mast cells and their mediators in reproduction, pregnancy and labour. Hum Reprod Update 17(3):383–396. https://doi.org/10.1093/humupd/dmq053

    Article  CAS  PubMed  Google Scholar 

  124. Mariuzzi L, Domenis R, Orsaria M et al (2016) Functional expression of aryl hydrocarbon receptor on mast cells populating human endometriotic tissues. Lab Investig 96(9):959–971. https://doi.org/10.1038/labinvest.2016.74

    Article  CAS  PubMed  Google Scholar 

  125. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952. https://doi.org/10.1038/nri1498

    Article  CAS  PubMed  Google Scholar 

  127. Chen H, Qin S, Lei A et al (2017) Expansion of monocytic myeloid-derived suppressor cells in endometriosis patients: a pilot study. Int Immunopharmacol 47:150–158. https://doi.org/10.1016/j.intimp.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  128. Zhang T, Zhou J, Man GCW et al (2018) MDSCs drive the process of endometriosis by enhancing angiogenesis and are a new potential therapeutic target. Eur J Immunol 48(6):1059–1073. https://doi.org/10.1002/eji.201747417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sun Y, Shao J, Jiang F et al (2018) CD33+ CD14+ CD11b+ HLA-DR monocytic myeloid-derived suppressor cells recruited and activated by CCR9/CCL25 are crucial for the pathogenic progression of endometriosis. Am J Reprod Immunol 30:e13067. https://doi.org/10.1111/aji.13067

    Article  CAS  Google Scholar 

  130. Chen Y, Wang K, Xu Y et al (2018) Alteration of myeloid-derived suppressor cells, chronic inflammatory cytokines, and exosomal miRNA contribute to the peritoneal immune disorder of patients with endometriosis. Reprod Sci 19:1933719118808923. https://doi.org/10.1177/1933719118808923

    Article  Google Scholar 

  131. Ouyang Z, Osuga Y, Hirota Y et al (2010) Interleukin-4 induces expression of eotaxin in endometriotic stromal cells. Fertil Steril 94(1):58–62. https://doi.org/10.1016/j.fertnstert.2009.01.129

    Article  CAS  PubMed  Google Scholar 

  132. Sui C, Mecha E, Omwandho CO et al (2016) PAI-1 secretion of endometrial and endometriotic cells is Smad2/3- and ERK1/2-dependent and influences cell adhesion. Am J Transl Res 8(5):2394–2402

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Roberts M, Luo X, Chegini N (2005) Differential regulation of interleukins IL-13 and IL-15 by ovarian steroids, TNF-alpha and TGF-beta in human endometrial epithelial and stromal cells. Mol Hum Reprod 11(10):751–760. https://doi.org/10.1093/molehr/gah233

    Article  CAS  PubMed  Google Scholar 

  134. Chang KK, Liu LB, Li H et al (2014) TSLP induced by estrogen stimulates secretion of MCP-1 and IL-8 and growth of human endometrial stromal cells through JNK and NF-κB signal pathways. Int J Clin Exp Pathol 7(5):1889–1899

    PubMed  PubMed Central  Google Scholar 

  135. Yang HL, Chang KK, Mei J et al (2018) Estrogen restricts the apoptosis of endometrial stromal cells by promoting TSLP secretion. Mol Med Rep 18(5):4410–4416. https://doi.org/10.3892/mmr.2018.9428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gargett CE (2006) Identification and characterisation of human endometrial stem/progenitor cells. Aust N Z J Obstet Gynaecol 46(3):250–253. https://doi.org/10.1111/j.1479-828X.2006.00582.x

    Article  PubMed  Google Scholar 

  137. Gargett CE, Schwab KE, Zillwood RM et al (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80(6):1136–1145. https://doi.org/10.1095/biolreprod.108.075226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nikoo S, Ebtekar M, Jeddi-Tehrani M et al (2014) Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Mol Hum Reprod 20(9):905–918. https://doi.org/10.1093/molehr/gau044

    Article  CAS  PubMed  Google Scholar 

  139. Gargett CE, Masuda H (2010) Adult stem cells in the endometrium. Mol Hum Reprod 16(11):818–834. https://doi.org/10.1093/molehr/gaq061

    Article  CAS  PubMed  Google Scholar 

  140. Kao AP, Wang KH, Chang CC et al (2011) Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil Steril 95(4):1308–1315. https://doi.org/10.1016/j.fertnstert.2010.09.064

    Article  CAS  PubMed  Google Scholar 

  141. Gurung S, Deane JA, Masuda H et al (2015) Stem cells in endometrial physiology. Semin Reprod Med 33(5):326–332. https://doi.org/10.1055/s-0035-1558405

    Article  CAS  PubMed  Google Scholar 

  142. Li F, Alderman MH 3rd, Tal A et al (2018) Hematogenous dissemination of mesenchymal stem cells from endometriosis. Stem Cells 36(6):881–890. https://doi.org/10.1002/stem.2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Koippallil Gopalakrishnan Nair AR, Pandit H, Warty N et al (2015) Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype. Int Immunol 27(4):195–204. https://doi.org/10.1093/intimm/dxu103

    Article  CAS  PubMed  Google Scholar 

  144. Li J, Dai Y, Zhu H et al (2016) Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1. Hum Reprod 31(6):1224–1235. https://doi.org/10.1093/humrep/dew058

    Article  CAS  PubMed  Google Scholar 

  145. Kokoroishi K, Nakashima A, Doi S et al (2016) High glucose promotes TGF-β1 production by inducing FOS expression in human peritoneal mesothelial cells. Clin Exp Nephrol 20(1):30–38. https://doi.org/10.1007/s10157-015-1128-9

    Article  CAS  PubMed  Google Scholar 

  146. Young VJ, Ahmad SF, Duncan WC et al (2017) The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum Reprod Update 23(5):548–559. https://doi.org/10.1093/humupd/dmx016

    Article  CAS  PubMed  Google Scholar 

  147. Omwandho CO, Konrad L, Halis G et al (2010) Role of TGF-betas in normal human endometrium and endometriosis. Hum Reprod 25(1):101–109. https://doi.org/10.1093/humrep/dep382

    Article  CAS  PubMed  Google Scholar 

  148. Brosens IA (1997) Endometriosis–a disease because it is characterized by bleeding. Am J Obstet Gynecol 176(2):263–267

    Article  CAS  PubMed  Google Scholar 

  149. Ding D, Liu X, Duan J et al (2015) Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod 30(4):812–832. https://doi.org/10.1093/humrep/dev025

    Article  CAS  PubMed  Google Scholar 

  150. Guo SW, Ding D, Geng JG et al (2015) P-selectin as a potential therapeutic target for endometriosis. Fertil Steril 103(4):990–1000. https://doi.org/10.1016/j.fertnstert.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  151. Zhang Q, Ding D, Liu X et al (2015) Activated platelets induce estrogen receptor β expression in endometriotic stromal cells. Gynecol Obstet Investig 80(3):187–192. https://doi.org/10.1159/000377629

    Article  CAS  Google Scholar 

  152. Smyth SS, McEver RP, Weyrich AS et al (2009) Platelet colloquium participants. Platelet functions beyond hemostasis. J Thromb Haemost 7(11):1759–1766. https://doi.org/10.1111/j.1538-7836.2009.03586.x

    Article  CAS  PubMed  Google Scholar 

  153. Wu Q, Ding D, Liu X et al (2015) Evidence for a hypercoagulable state in women with ovarian endometriomas. Reprod Sci 22(9):1107–1114. https://doi.org/10.1177/1933719115572478

    Article  CAS  PubMed  Google Scholar 

  154. Li XJ, Zhou M, Li XH et al (2009) Effects of Tanshinone IIa on cytokines and platelets in immune vasculitis and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17(1):188–192

    PubMed  Google Scholar 

  155. Shang Q, Xu H, Huang L (2012) Tanshinone IIA: a promising natural cardioprotective agent. Evid Based Complement Alternat Med 2012:716459. https://doi.org/10.1155/2012/716459

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhang Q, Liu X, Guo SW (2017) Progressive development of endometriosis and its hindrance by anti-platelet treatment in mice with induced endometriosis. Reprod Biomed Online 34(2):124–136. https://doi.org/10.1016/j.rbmo.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  157. Guo SW, Du Y, Liu X (2016) Endometriosis-derived stromal cells secrete thrombin and thromboxane A2, inducing platelet activation. Reprod Sci 23(8):1044–1052. https://doi.org/10.1177/1933719116630428

    Article  CAS  PubMed  Google Scholar 

  158. Guo SW, Du Y, Liu X (2016) Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum Reprod 31(7):1462–1474. https://doi.org/10.1093/humrep/dew057

    Article  CAS  PubMed  Google Scholar 

  159. Du Y, Liu X, Guo SW (2017) Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. Hum Reprod 32(4):794–810. https://doi.org/10.1093/humrep/dex014

    Article  CAS  PubMed  Google Scholar 

  160. Liu XT, Sun HT, Zhang ZF et al (2018) Indoleamine 2,3-dioxygenase suppresses the cytotoxicity of NK cells in response to ectopic endometrial stromal cells in endometriosis. Reproduction 156(5):397–404. https://doi.org/10.1530/REP-18-0112

    Article  CAS  PubMed  Google Scholar 

  161. Jovanovic I, Radosavljevic G, Mitrovic M et al (2011) ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma. Eur J Immunol 1(7):1902–1912. https://doi.org/10.1002/eji.201141417

    Article  CAS  Google Scholar 

  162. Mancini F, Milardi D, Carfagna P et al (2018) Low-dose SKA Progesterone and Interleukin-10 modulate the inflammatory pathway in endometriotic cell lines. Int Immunopharmacol 55:223–230. https://doi.org/10.1016/j.intimp.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  163. Jiang J, Yu K, Jiang Z et al (2018) IL-37 affects the occurrence and development of endometriosis by regulating the biological behavior of endometrial stromal cells through multiple signaling pathways. Biol Chem 399(11):1325–1337. https://doi.org/10.1515/hsz-2018-0254

    Article  CAS  PubMed  Google Scholar 

  164. Yang WV, Au HK, Chang CW et al (2005) Matrix remodeling and endometriosis. Reprod Med Biol 4(2):93–99. https://doi.org/10.1111/j.1447-0578.2005.00098.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ulukus M, Cakmak H, Arici A (2006) The role of endometrium in endometriosis. J Soc Gynecol Investig 13(7):467–476. https://doi.org/10.1016/j.jsgi.2006.07.005

    Article  CAS  PubMed  Google Scholar 

  166. Szymanowski K (2007) Apoptosis pattern in human endometrium in women with pelvic endometriosis. Eur J Obstet Gynecol Reprod Biol 132(1):107–110. https://doi.org/10.1016/j.ejogrb.2006.04.008

    Article  PubMed  Google Scholar 

  167. Li MQ, Luo XZ, Meng YH et al (2012) CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway. Hum Reprod 27(7):2107–2116. https://doi.org/10.1093/humrep/des132

    Article  CAS  PubMed  Google Scholar 

  168. Li MQ, Shao J, Meng YH et al (2013) NME1 suppression promotes growth, adhesion and implantation of endometrial stromal cells via Akt and MAPK/Erk1/2 signal pathways in the endometriotic milieu. Hum Reprod 28(10):2822–2831. https://doi.org/10.1093/humrep/det248

    Article  CAS  PubMed  Google Scholar 

  169. Li X, Zhang Y, Zhao L et al (2014) Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Hum Mol Genet 23(22):6008–6021. https://doi.org/10.1093/hmg/ddu330

    Article  CAS  PubMed  Google Scholar 

  170. Mei J, Zhu XY, Jin LP et al (2015) Estrogen promotes the survival of human secretory phase endometrial stromal cells via CXCL12/CXCR4 up-regulation-mediated autophagy inhibition. Hum Reprod 30(7):1677–1689. https://doi.org/10.1093/humrep/dev100

    Article  CAS  PubMed  Google Scholar 

  171. Yang HL, Mei J, Chang KK et al (2017) Autophagy in endometriosis. Am J Transl Res 9(11):4707–4725

    CAS  PubMed  PubMed Central  Google Scholar 

  172. OuYang Z, Hirota Y, Osuga Y et al (2008) Interleukin-4 stimulates proliferation of endometriotic stromal cells. Am J Pathol 173(2):463–469. https://doi.org/10.2353/ajpath.2008.071044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Quattrone F, Sanchez AM, Pannese M et al (2015) The targeted delivery of interleukin 4 inhibits development of endometriotic lesions in a mouse model. Reprod Sci 22(9):1143–1152. https://doi.org/10.1177/1933719115578930

    Article  CAS  PubMed  Google Scholar 

  174. Schwager K, Bootz F, Imesch P et al (2011) The antibody-mediated targeted delivery of interleukin-10 inhibits endometriosis in a syngeneic mouse model. Hum Reprod 26(9):2344–2352. https://doi.org/10.1093/humrep/der195

    Article  CAS  PubMed  Google Scholar 

  175. Liu Q, Ma P, Liu L et al (2017) Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+ Treg cells in peritoneal fluid of mouse endometriosis model. Eur J Pharm Sci 96:542–550. https://doi.org/10.1016/j.ejps.2016.10.031

    Article  CAS  PubMed  Google Scholar 

  176. Chegini N (2008) TGF-beta system: the principal profibrotic mediator of peritoneal adhesion formation. Semin Reprod Med 26(4):298–312. https://doi.org/10.1055/s-0028-1082388

    Article  CAS  PubMed  Google Scholar 

  177. Bristol-Gould SK, Hutten CG, Sturgis C et al (2005) The development of a mouse model of ovarian endosalpingiosis. Endocrinology 146(12):5228–5236. https://doi.org/10.1210/en.2005-0697

    Article  CAS  PubMed  Google Scholar 

  178. Correa LF, Zheng Y, Delaney AA et al (2016) TGF-β induces endometriotic progression via a noncanonical, KLF11-mediated mechanism. Endocrinology 157(9):3332–3343. https://doi.org/10.1210/en.2016-1194

    Article  CAS  PubMed  Google Scholar 

  179. Lin X, Dai Y, Xu W et al (2018) Hypoxia promotes ectopic adhesion ability of endometrial stromal cells via TGF-β1/Smad signaling in endometriosis. Endocrinology 159(4):1630–1641. https://doi.org/10.1210/en.2017-03227

    Article  PubMed  Google Scholar 

  180. Tani H, Sato Y, Ueda M et al (2016) Role of versican in the pathogenesis of peritoneal endometriosis. J Clin Endocrinol Metab 101(11):4349–4356. https://doi.org/10.1210/jc.2016-2391

    Article  CAS  PubMed  Google Scholar 

  181. Au HK, Chang JH, Wu YC et al (2015) TGF-βI regulates cell migration through pluripotent transcription factor OCT4 in endometriosis. PLoS One 10(12):e0145256. https://doi.org/10.1371/journal.pone.0145256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang Q, Duan J, Liu X et al (2016) Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol 428:1–16. https://doi.org/10.1016/j.mce.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  183. Liu YG, Tekmal RR, Binkley PA et al (2009) Induction of endometrial epithelial cell invasion and c-fms expression by transforming growth factor beta. Mol Hum Reprod 15(10):665–673. https://doi.org/10.1093/molehr/gap043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Stocks MM, Crispens MA, Ding T et al (2017) Therapeutically targeting the inflammasome product in a chimeric model of endometriosis-related surgical adhesions. Reprod Sci 24(8):1121–1128. https://doi.org/10.1177/1933719117698584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang YM, Yang WX (2017) Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 8(25):41679–41689. https://doi.org/10.18632/oncotarget.16472

    Article  PubMed  PubMed Central  Google Scholar 

  186. Bilyk O, Coatham M, Jewer M et al (2017) Epithelial-to-mesenchymal transition in the female reproductive tract: from normal functioning to disease pathology. Front Oncol 7:145. https://doi.org/10.3389/fonc.2017.00145

    Article  PubMed  PubMed Central  Google Scholar 

  187. Matsuzaki S, Darcha C, Pouly JL et al (2017) Effects of matrix stiffness on epithelial to mesenchymal transition-like processes of endometrial epithelial cells: implications for the pathogenesis of endometriosis. Sci Rep 7:44616. https://doi.org/10.1038/srep44616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Matsuzaki S, Darcha C (2014) Antifibrotic properties of epigallocatechin-3-gallate in endometriosis. Hum Reprod 29(8):1677–1687. https://doi.org/10.1093/humrep/deu123

    Article  CAS  PubMed  Google Scholar 

  189. Matsuzaki S, Canis M, Pouly JL et al (2016) Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro. Hum Reprod 31(3):541–553. https://doi.org/10.1093/humrep/dev333

    Article  CAS  PubMed  Google Scholar 

  190. Zeng X, Yue Z, Gao Y et al (2018) NR4A1 is involved in fibrogenesis in ovarian endometriosis. Cell Physiol Biochem 46(3):1078–1090. https://doi.org/10.1159/000488838

    Article  CAS  PubMed  Google Scholar 

  191. Itoga T, Matsumoto T, Takeuchi H et al (2003) Fibrosis and smooth muscle metaplasia in rectovaginal endometriosis. Pathol Int 53:371–375

    Article  PubMed  Google Scholar 

  192. Sandoval P, Jiménez-Heffernan JA, Guerra-Azcona G et al (2016) Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. J Pathol 239(1):48–59. https://doi.org/10.1002/path.4695

    Article  CAS  PubMed  Google Scholar 

  193. Ji X, Li J, Xu L et al (2013) IL4 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-β1 to induce bronchial epithelial-mesenchymal transition (EMT). Int J Clin Exp Pathol 6(8):1481–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu CY, Xu JY, Shi XY et al (2013) M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig 93(7):844–854. https://doi.org/10.1038/labinvest.2013.69

    Article  CAS  PubMed  Google Scholar 

  195. Cao H, Zhang J, Liu H et al (2016) IL-13/STAT6 signaling plays a critical role in the epithelial-mesenchymal transition of colorectal cancer cells. Oncotarget 7(38):61183–61198. https://doi.org/10.18632/oncotarget.11282

    Article  PubMed  PubMed Central  Google Scholar 

  196. Xu Z, Zhao C, Wang Z et al (2018) Interleukin-33 levels are elevated in chronic allograft dysfunction of kidney transplant recipients and promotes epithelial to mesenchymal transition of human kidney (HK-2) cells. Gene 644:113–121. https://doi.org/10.1016/j.gene.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  197. Jiang M, Wang Y, Zhang H et al (2018) IL-37 inhibits invasion and metastasis in non-small cell lung cancer by suppressing the IL-6/STAT3 signaling pathway. Thorac Cancer 9(5):621–629. https://doi.org/10.1111/1759-7714.12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wang T, Liu Y, Zou JF et al (2017) Interleukin-17 induces human alveolar epithelial to mesenchymal cell transition via the TGF-β1 mediated Smad2/3 and ERK1/2 activation. PLoS One 12(9):e0183972. https://doi.org/10.1371/journal.pone.0183972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Weng SY, Wang X, Vijayan S et al (2018) IL-4 receptor alpha signaling through macrophages differentially regulates liver fibrosis progression and reversal. EBioMedicine 29:92–103. https://doi.org/10.1016/j.ebiom.2018.01.028

    Article  PubMed  PubMed Central  Google Scholar 

  200. Santulli P, Even M, Chouzenoux S et al (2013) Profibrotic interleukin-33 is correlated with uterine leiomyoma tumour burden. Hum Reprod 28(8):2126–2133. https://doi.org/10.1093/humrep/det238

    Article  CAS  PubMed  Google Scholar 

  201. Tang J, Huang H, Ji X et al (2014) Involvement of IL-13 and tissue transglutaminase in liver granuloma and fibrosis after Schistosoma japonicum infection. Mediat Inflamm 2014:753483. https://doi.org/10.1155/2014/753483

    Article  CAS  Google Scholar 

  202. Zhang LJ, Zheng WD, Chen YX et al (2007) Antifibrotic effects of interleukin-10 on experimental hepatic fibrosis. Hepatogastroenterology 54(79):2092–2098

    CAS  PubMed  Google Scholar 

  203. Djokovic D, Calhaz-Jorge C (2014) Angiogenesis as a therapeutic target in endometriosis. Acta Med Port 27(4):489–497

    Article  PubMed  Google Scholar 

  204. Marí-Alexandre J, García-Oms J, Barceló-Molina M et al (2015) MicroRNAs and angiogenesis in endometriosis. Thromb Res 135(Suppl 1):S38–S40. https://doi.org/10.1016/S0049-3848(15)50439-8

    Article  CAS  PubMed  Google Scholar 

  205. Salcedo R, Young HA, Ponce ML et al (2001) Eotaxin (CCL11) induces in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol 166(12):7571–7578

    Article  CAS  PubMed  Google Scholar 

  206. Na YJ, Yang SH, Baek DW et al (2006) Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes. Hum Reprod 21(7):1846–1855. https://doi.org/10.1093/humrep/del077

    Article  CAS  PubMed  Google Scholar 

  207. Young VJ, Ahmad SF, Brown JK et al (2015) Peritoneal VEGF-A expression is regulated by TGF-β1 through an ID1 pathway in women with endometriosis. Sci Rep 5:16859. https://doi.org/10.1038/srep16859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Fujimoto J, Sakaguchi H, Aoki I et al (2000) Clinical implications of expression of interleukin-8 related to angiogenesis in uterine cervical cancers. Cancer Res 60:2632–2635

    CAS  PubMed  Google Scholar 

  209. Xie F, Meng YH, Liu LB et al (2013) Cervical carcinoma cells stimulate the angiogenesis through TSLP promoting growth and activation of vascular endothelial cells. Am J Reprod Immunol 70(1):69–79. https://doi.org/10.1111/aji.12104

    Article  CAS  PubMed  Google Scholar 

  210. Bulun SE (2009) Endometriosis. N Engl J Med 360(3):268–279. https://doi.org/10.1056/NEJMra0804690

    Article  CAS  PubMed  Google Scholar 

  211. Urata Y, Osuga Y, Akiyama I et al (2013) Interleukin-4 and prostaglandin E2 synergistically up-regulate 3β-hydroxysteroid dehydrogenase type 2 in endometrioma stromal cells. J Clin Endocrinol Metab 98(4):1583–1590. https://doi.org/10.1210/jc.2012-3475

    Article  CAS  PubMed  Google Scholar 

  212. Wang Y, Yu J, Luo X et al (2010) Abnormal regulation of chemokine TECK and its receptor CCR9 in the endometriotic milieu is involved in pathogenesis of endometriosis by way of enhancing invasiveness of endometrial stromal cells. Cell Mol Immunol 7(1):51–60. https://doi.org/10.1038/cmi.2009.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Reis FM, Petraglia F, Taylor RN (2013) Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum Reprod Update 19(4):406–418. https://doi.org/10.1093/humupd/dmt010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Borrelli GM, Carvalho KI, Kallas EG et al (2013) Chemokines in the pathogenesis of endometriosis and infertility. J Reprod Immunol 98(1–2):1–9. https://doi.org/10.1016/j.jri.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  215. Borrelli GM, Abrão MS, Mechsner S (2014) Can chemokines be used as biomarkers for endometriosis? A systematic review. Hum Reprod 29(2):253–266. https://doi.org/10.1093/humrep/det401

    Article  CAS  PubMed  Google Scholar 

  216. Wu RF, Yang HM, Zhou WD et al (2017) Effect of interleukin-1β and lipoxin A4 in human endometriotic stromal cells: proteomic analysis. J Obstet Gynaecol Res 43(2):308–319. https://doi.org/10.1111/jog.13201

    Article  CAS  PubMed  Google Scholar 

  217. Mei J, Zhou WJ, Zhu XY et al (2018) Suppression of autophagy and HCK signaling promotes PTGS2high FCGR3- NK cell differentiation triggered by ectopic endometrial stromal cells. Autophagy 14(8):1376–1397. https://doi.org/10.1080/15548627.2018.1476809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Giudice LC (2010) Clinical practice. Endometriosis. N Engl J Med 362(25):2389–2398. https://doi.org/10.1056/NEJMcp1000274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89(4):587–596

    Article  CAS  PubMed  Google Scholar 

  220. Farrar JD, Asnagli H, Murphy KM (2002) T helper subset development: roles of instruction, selection, and transcription. J Clin Investig 109(4):431–435. https://doi.org/10.1172/JCI15093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen P, Wang DB, Liang YM (2016) Evaluation of estrogen in endometriosis patients: regulation of GATA-3 in endometrial cells and effects on Th2 cytokines. J Obstet Gynaecol Res 42(6):669–677. https://doi.org/10.1111/jog.12957

    Article  CAS  PubMed  Google Scholar 

  222. Saia RS, Bertozi G, Cunha FQ et al (2011) Estradiol and thermoregulation in adult endotoxemic rats exposed to lipopolysaccharide in neonatal life. Acta Physiol (Oxf) 203(4):429–439. https://doi.org/10.1111/j.1748-1716.2011.02334.x

    Article  CAS  Google Scholar 

  223. Zhang Y, Jin LP (2017) Effects of TSLP on obstetrical and gynecological diseases. Am J Reprod Immunol. https://doi.org/10.1111/aji.12612

    Article  PubMed  Google Scholar 

  224. Wang G, Tokushige N, Russell P et al (2010) Neuroendocrine cells in eutopic endometrium of women with endometriosis. Hum Reprod 25(2):387–391. https://doi.org/10.1093/humrep/dep379

    Article  CAS  PubMed  Google Scholar 

  225. Kempuraj D, Papadopoulou N, Stanford EJ et al (2004) Increased numbers of activated mast cells in endometriosis lesions positive for corticotropin-releasing hormone and urocortin. Am J Reprod Immunol 52(4):267–275. https://doi.org/10.1111/j.1600-0897.2004.00224.x

    Article  PubMed  Google Scholar 

  226. Florio P, Reis FM, Torres PB et al (2007) Plasma urocortin levels in the diagnosis of ovarian endometriosis. Obstet Gynecol 110(3):594–600. https://doi.org/10.1097/01.AOG.0000278572.86019.ae

    Article  CAS  PubMed  Google Scholar 

  227. Novembri R, Borges LE, Carrarelli P et al (2011) Impaired CRH and urocortin expression and function in eutopic endometrium of women with endometriosis. J Clin Endocrinol Metab 96(4):1145–1150. https://doi.org/10.1210/jc.2010-2263

    Article  CAS  PubMed  Google Scholar 

  228. Novembri R, Carrarelli P, Toti P et al (2011) Urocortin 2 and urocortin 3 in endometriosis: evidence for a possible role in inflammatory response. Mol Hum Reprod 17(9):587–593. https://doi.org/10.1093/molehr/gar020

    Article  CAS  PubMed  Google Scholar 

  229. Somigliana E, Vigano P, Barbara G et al (2009) Treatment of endometriosis-related pain: options and outcomes. Front Biosci (Elite Ed) 1:455–465

    Article  Google Scholar 

  230. Ferrero S, Alessandri F, Racca A et al (2015) Treatment of pain associated with deep endometriosis: alternatives and evidence. Fertil Steril 104(4):771–792. https://doi.org/10.1016/j.fertnstert.2015.08.031

    Article  PubMed  Google Scholar 

  231. Tosti C, Biscione A, Morgante G et al (2017) Hormonal therapy for endometriosis: from molecular research to bedside. Eur J Obstet Gynecol Reprod Biol 209:61–66. https://doi.org/10.1016/j.ejogrb.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  232. Angioni S, Pontis A, Dessole M et al (2015) Pain control and quality of life after laparoscopic en-block resection of deep infiltrating endometriosis (DIE) vs. incomplete surgical treatment with or without GnRHa administration after surgery. Arch Gynecol Obstet 291(2):363–370. https://doi.org/10.1007/s00404-014-3411-5

    Article  CAS  PubMed  Google Scholar 

  233. Velasco I, Campos A, Acién P (2005) Changes in cytokine levels of patients with ovarian endometriosis after treatment with gonadotropin-releasing hormone analogue, ultrasound-guided drainage, and intracystic recombinant interleukin-2. Fertil Steril 83(4):873–877. https://doi.org/10.1016/j.fertnstert.2004.10.035

    Article  CAS  PubMed  Google Scholar 

  234. Selak V, Farquhar C, Prentice A et al (2007) Danazol for pelvic pain associated with endometriosis. Cochrane Database Syst Rev 4:CD000068. https://doi.org/10.1002/14651858.CD000068.pub2

    Article  Google Scholar 

  235. Uchiyama M, Jin X, Zhang Q et al (2012) Induction of regulatory CD4+ cells and prolongation of survival of fully allogeneic murine cardiac grafts by danazol. Transplant Proc 44(4):1067–1069. https://doi.org/10.1016/j.transproceed.2012.01.103

    Article  CAS  PubMed  Google Scholar 

  236. Uchiyama M, Jin X, Zhang Q et al (2012) Danazol induces prolonged survival of fully allogeneic cardiac grafts and maintains the generation of regulatory CD4(+) cells in mice. Transpl Int 25(3):357–365. https://doi.org/10.1111/j.1432-2277.2011.01427.x

    Article  CAS  PubMed  Google Scholar 

  237. Umezawa M, Tanaka N, Takeda K et al (2011) Clarithromycin and telithromycin increases interleukin-10 expression in the rat endometriosis model. Cytokine 55(3):339–342. https://doi.org/10.1016/j.cyto.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  238. Maione F, De Feo V, Caiazzo E et al (2014) Tanshinone IIA, a major component of Salvia milthorriza Bunge, inhibits platelet activation via Erk-2 signaling pathway. J Ethnopharmacol 155(2):1236–1242. https://doi.org/10.1016/j.jep.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  239. Jiang X, Chen Y, Zhu H et al (2015) Sodium Tanshinone IIA sulfonate ameliorates bladder fibrosis in a rat model of partial bladder outlet obstruction by inhibiting the TGF-β/Smad pathway activation. PLoS One 10(6):e0129655. https://doi.org/10.1371/journal.pone.0129655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Tang H, He H, Ji H et al (2015) Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β-dependent epithelial to mesenchymal transition. J Surg Res 197(1):167–175. https://doi.org/10.1016/j.jss.2015.02.062

    Article  CAS  PubMed  Google Scholar 

  241. Christensen LP (2009) Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1–99. https://doi.org/10.1016/S1043-4526(08)00401-4

    Article  CAS  PubMed  Google Scholar 

  242. Wong AS, Che CM, Leung KW (2015) Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat Prod Rep 32(2):256–272. https://doi.org/10.1039/c4np00080c

    Article  CAS  PubMed  Google Scholar 

  243. Xu FY, Shang WQ, Yu JJ et al (2016) The antitumor activity study of ginsenosides and metabolites in lung cancer cell. Am J Transl Res 8(4):1708–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Gu CJ, Cheng J, Zhang B et al (2017) Protopanaxadiol and metformin synergistically inhibit estrogen-mediated proliferation and anti-autophagy effects in endometrial cancer cells. Am J Transl Res 9(9):4071–4082

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Kim MK, Lee SK, Park JH et al (2017) Ginsenoside Rg3 decreases fibrotic and invasive nature of endometriosis by modulating miRNA-27b: in vitro and in vivo studies. Sci Rep 7(1):17670. https://doi.org/10.1038/s41598-017-17956-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Zhang B, Zhou WJ, Gu CJ et al (2018) The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis 9(5):574. https://doi.org/10.1038/s41419-018-0581-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Cao Y, Ye Q, Zhuang M et al (2017) Ginsenoside Rg3 inhibits angiogenesis in a rat model of endometriosis through the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway. PLoS One 12(11):e0186520. https://doi.org/10.1371/journal.pone.0186520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Qin X, Liu Y, Feng Y et al (2018) Ginsenoside Rf alleviates dysmenorrhea and inflammation through the BDNF-TrkB-CREB pathway in a rat model of endometriosis. Food Funct. https://doi.org/10.1039/c8fo01839a

    Article  PubMed  Google Scholar 

  249. Laschke MW, Schwender C, Scheuer C et al (2008) Epigallocatechin-3-gallate inhibits estrogen-induced activation of endometrial cells in vitro and causes regression of endometriotic lesions in vivo. Hum Reprod 23(10):2308–2318. https://doi.org/10.1093/humrep/den245

    Article  CAS  PubMed  Google Scholar 

  250. Xu H, Lui WT, Chu CY et al (2009) Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Hum Reprod 24(3):608–618. https://doi.org/10.1093/humrep/den417

    Article  CAS  PubMed  Google Scholar 

  251. Xu H, Becker CM, Lui WT et al (2011) Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. Fertil Steril 96(4):1021–1028. https://doi.org/10.1016/j.fertnstert.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  252. Wang CC, Xu H, Man GC et al (2013) Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice. Angiogenesis 16(1):59–69. https://doi.org/10.1007/s10456-012-9299-4

    Article  CAS  PubMed  Google Scholar 

  253. Carvalho LF, Samadder AN, Agarwal A et al (2012) Oxidative stress biomarkers in patients with endometriosis: systematic review. Arch Gynecol Obstet 286(4):1033–1040. https://doi.org/10.1007/s00404-012-2439-7

    Article  CAS  PubMed  Google Scholar 

  254. Rocha MG, Gomes VA, Tanus-Santos JE et al (2015) Reduction of blood nitric oxide levels is associated with clinical improvement of the chronic pelvic pain related to endometriosis. Braz J Med Biol Res 48(4):363–369. https://doi.org/10.1590/1414-431X20143619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chang RH, Feng MH, Liu WH et al (1997) Nitric oxide increased interleukin-4 expression in T lymphocytes. Immunology 90(3):364–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Mier-Cabrera J, González-Gallardo S, Hernández-Guerrero C (2013) Effect of nitric oxide and TH1/TH2 cytokine supplementation over ectopic endometrial tissue growth in a murine model of endometriosis. Reprod Sci 20(11):1332–1338. https://doi.org/10.1177/1933719113485297

    Article  CAS  PubMed  Google Scholar 

  257. Mei J, Li MQ, Ding D et al (2013) Indoleamine 2,3-dioxygenase-1 (IDO1) enhances survival and invasiveness of endometrial stromal cells via the activation of JNK signaling pathway. Int J Clin Exp Pathol 6(3):431–444

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Mei J, Chang KK, Sun HX (2017) Immunosuppressive macrophages induced by IDO1 promote the growth of endometrial stromal cells in endometriosis. Mol Med Rep 15(4):2255–2260. https://doi.org/10.3892/mmr.2017.6242

    Article  CAS  PubMed  Google Scholar 

  259. Weigert C, Brodbeck K, Sawadogo M et al (2004) Upstream stimulatory factor (USF) proteins induce human TGF-beta1 gene activation via the glucose-response element-1013/-1002 in mesangial cells: up-regulation of USF activity by the hexosamine biosynthetic pathway. J Biol Chem 279(16):15908–15915. https://doi.org/10.1074/jbc.M313524200

    Article  CAS  PubMed  Google Scholar 

  260. Sinaii N, Clearly SD, Ballweg ML et al (2002) High rates of autoimmune and endocrine disorders, fibromyalgia, chronic fatigue syndrome and atopic diseases among women with endometriosis: a survey analysis. Hum Reprod 17(10):2715–2724

    Article  CAS  PubMed  Google Scholar 

  261. Wang CT, Wang DB, Liu KR et al (2015) Inducing malignant transformation of endometriosis in rats by long-term sustaining hyperestrogenemia and type II diabetes. Cancer Sci 106(1):43–50. https://doi.org/10.1111/cas.12573

    Article  CAS  PubMed  Google Scholar 

  262. Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73(3–4):141–162. https://doi.org/10.1016/j.plefa.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  263. Mitchell S, Thomas G, Harvey K et al (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13(10):2497–2507

    Article  CAS  PubMed  Google Scholar 

  264. Kumar R, Clerc AC, Gori I et al (2014) Lipoxin A4 prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E2 production and estrogen signaling. PLoS One 9(2):e89742. https://doi.org/10.1371/journal.pone.0089742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kyama CM, Overbergh L, Mihalyi A et al (2008) Effect of recombinant human TNF-binding protein-1 and GnRH antagonist on mRNA expression of inflammatory cytokines and adhesion and growth factors in endometrium and endometriosis tissues in baboons. Fertil Steril 89(5 Suppl):1306–1313. https://doi.org/10.1016/j.fertnstert.2006.11.205

    Article  CAS  PubMed  Google Scholar 

  266. Daftary GS, Zheng Y, Tabbaa ZM et al (2013) A novel role of the Sp/KLF transcription factor KLF11 in arresting progression of endometriosis. PLoS One 8(3):e60165. https://doi.org/10.1371/journal.pone.0060165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Falconer H, Mwenda JM, Chai DC et al (2008) Effects of anti-TNF-mAb treatment on pregnancy in baboons with induced endometriosis. Fertil Steril 89(5 Suppl):1537–1545. https://doi.org/10.1016/j.fertnstert.2007.05.062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (nos. 91542108, 81471513, 31671200, 81601354, 31600735 and 81571509), the Shanghai Rising-Star Program (no. 16QA1400800), the Innovation-oriented Science and Technology Grant from NPFPC Key Laboratory of Reproduction Regulation (CX2017-2), the Program for Zhuoxue of Fudan University, the National Science Foundation of Jiangsu Province (no. BK20160128), the Fundamental Research Funds for the Central Universities (no. 021414380180), the Open Project Program of Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases (CN) (no. 14DZ2271700).

Author information

Authors and Affiliations

Authors

Contributions

MQL designed and wrote the review, and supervised and critically reviewed the complete manuscript. WJZ and HLY performed the literature search, drafted the manuscript and prepared the figures. JS, KKC and JM helped to perform revisions and critically discussed the completed manuscript.

Corresponding author

Correspondence to Ming-Qing Li.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be considered as potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WJ., Yang, HL., Shao, J. et al. Anti-inflammatory cytokines in endometriosis. Cell. Mol. Life Sci. 76, 2111–2132 (2019). https://doi.org/10.1007/s00018-019-03056-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03056-x

Keywords

Navigation