Skip to main content
Log in

A free boundary problem for planar compressible Hall-magnetohydrodynamic equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and uniqueness of the global classical solution for the planar compressible Hall-magnetohydrodynamic equations with large initial data. The system is supplemented with free boundary and smooth initial conditions. The proof relies on the bounds of the density and the skew-symmetric structure of the Hall term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheritogaray, M., Degond, P., Frouvelle, A., Liu, J.G.: Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinet. Relat. Models 4, 901–918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Forbes, T.G.: Magnetic reconnection in solar flares. Geophys. Astrophys. Fluid Dyn. 62, 15–36 (1991)

    Article  Google Scholar 

  3. Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD systems. Phys. D 208, 59–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wardle, M.: Star formation and the Hall effect. Astrophys. Space Sci. 292, 317–323 (2004)

    Article  Google Scholar 

  5. Balbus, S.A., Terquem, C.: Linear analysis of the Hall effect in protostellar disks. Astrophys. J. 552, 235–247 (2001)

    Article  Google Scholar 

  6. Shalybkov, D.A., Urpin, V.A.: The Hall effect and the decay of magnetic fields. Astron. Astrophys. 321, 685–690 (1997)

    Google Scholar 

  7. Mininni, P.D., Gòmez, D.O., Mahajan, S.M.: Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics. Astrophys. J. 587, 472–481 (2003)

    Article  Google Scholar 

  8. Chae, D., Degond, P., Liu, J.G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 555–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chae, D., Lee, J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J. Differ. Equ. 256, 3835–3858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, J.S., Li, F.C., Nakamura, G.: Regularity criteria for the incompressible Hall-magnetohydrodynamic equations. Nonlinear Anal. 109, 173–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, M.M.: Regularity criterion for the 3D Hall-magneto-hydrodynamics. J. Differ. Equ. 261, 573–591 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chae, D., Wolf, J.: On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane. SIAM J. Math. Anal. 48, 443–469 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chae, D., Wolf, J.: Regularity of the 3D stationary Hall magnetohydrodynamic equations on the plane. Commun. Math. Phys. 354, 213–230 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Weng, S.K.: Space–time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations. J. Funct. Anal. 270, 2168–2187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chae, D., Schonbek, M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255, 3971–3982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan, J.S., Alsaedi, A., Hayat, T., Nakamura, G., Zhou, Y.: On strong solutions to the compressible Hall-magnetohydrodynamic system. Nonlinear Anal. Real World Appl. 22, 423–434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, J.C., Yao, Z.A.: Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete Contin. Dyn. Syst. 36, 3077–3106 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Tao, Q., Yang, Y., Yao, Z.A.: Global existence and exponential stability of solutions for planar compressible Hall-magnetohydrodynamic equations. J. Differ. Equ. 263, 3788–3831 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, G.Q., Wang, D.H.: Global solutions of nonlinear magnetohydrodynamics with large initial data. J. Differ. Equ. 182, 344–376 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, G.Q., Wang, D.H.: Existence and continuous dependence of large solutions for the magnetohydrodynamic equations. Z. Angew. Math. Phys. 54, 608–632 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, D.H.: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J. Appl. Math. 63, 1424–1441 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Okada, M.: Free boundary value problems for the equation of one-dimensional motion of compressible viscous fluids. Jpn. J. Appl. Math. 4, 219–235 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Okada, M.: Free boundary value problems for the equation of one-dimensional motion of viscous gas. Jpn. J. Appl. Math. 6, 161–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xin, Z.P.: Blow-up of smooth solutions to the compressible Navier–Stokes equations with compact density. Commun. Pure Appl. Math. 351, 229–240 (1998)

    Article  MATH  Google Scholar 

  25. Luo, T., Xin, Z.P., Yang, T.: Interface behavior of compressible Navier–Stokes equations with vacuum. SIAM J. Math. Anal. 31, 1175–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, T.P., Xin, Z.P., Yang, T.: Vacuum states of compressible flow. Discrete Contin. Dyn. Syst. 4, 1–32 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Jiang, S.: Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density dependent viscosity. Math. Nachr. 190, 169–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, S., Xin, Z.P., Zhang, P.: Global weak solutions to 1D compressible isentropic Navier–Stokes with density-dependent viscosity. Methods Appl. Anal. 12, 239–252 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Yang, T., Yao, Z.A., Zhu, C.J.: Compressible Navier–Stokes equations with density-dependent viscosity and vacuum. Commun. Partial Differ. Equ. 26, 965–981 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, T., Zhu, C.J.: Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329–363 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qin, X.P., Yao, Z.A., Zhao, H.J.: One dimensional compressible Navier–Stokes equations with density-dependent viscosity and free boundaries. Commun. Pure Appl. Anal. 7, 373–381 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Guo, Z.H., Jiang, S., Xie, F.: Global weak solutions and asymptotic behavior to 1D compressible Navier–Stokes equations with degenerate viscosity coefficient. Asymptot. Anal. 60, 101–123 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Guo, Z.H., Zhu, C.J.: Remarks on one-dimensional compressible Navier–Stokes equations with density-dependent viscosity and vacuum. J. Differ. Equ. 248, 2768–2799 (2010)

    Article  MATH  Google Scholar 

  34. Li, H.L., Li, J., Xin, Z.P.: Vanishing of vacuum states and blow-up phenomena of the compressible Navier–Stokes equations. Commun. Math. Phys. 281, 401–444 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qin, X.L., Yao, Z.A.: Global solutions to planar magnetohydrodynamic equations with radiation and large initial data. Nonlinearity 26, 591–619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ou, Y.B., Shi, P.: Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete Contin. Dyn. Syst. Ser. B 22, 537–567 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ding, S.J., Lin, J.Y., Wang, C.Y., Wen, H.Y.: Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete Contin. Dyn. Syst. 32, 539–563 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ding, S.J., Huang, J.R., Xia, F.G.: A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension. J. Differ. Equ. 255, 3848–3879 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Tao is partially supported by the National Science Foundation of China (No. 11501378), Guangdong Natural Science Foundation (Nos. 2014A030310074, 2016A030313048). Yang is partially supported by the National Science Foundation of China (No. 11301345). Gao is partially supported by Guangdong Natural Science Foundation (No. 2014A030313161), China Postdoctoral Science Foundation Project (Nos. 2016M600064, 2017T100053), and the National Science Foundation of China (No. 11571380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Yang, Y. & Gao, J. A free boundary problem for planar compressible Hall-magnetohydrodynamic equations. Z. Angew. Math. Phys. 69, 15 (2018). https://doi.org/10.1007/s00033-018-0912-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0912-2

Keywords

Mathematics Subject Classification

Navigation