Skip to main content
Log in

A sandwich dipstick assay for ATP detection based on split aptamer fragments

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aptamer-based strip assay is an easy, highly efficient and low-cost detection method, which has been developed and easily applied to onsite detection. A new sensitive sandwich dipstick assay for adenosine triphosphate (ATP) detection was successfully developed based on specific recognition between split aptamer fragments and the target. In this method, the thiolated aptamer was first conjugated to the surface of gold nanoparticles (AuNPs), while the biotin-aptamer was immobilized on the surface of a nitrocellulose filter in the test line. In the presence of ATP, the thiol-aptamer/ATP/biotin-aptamer complexes were generated, which led to an obvious increase in optical signals at the test line. Under the optimal determination conditions, an excellent linear logarithmic response to the ATP concentration was obtained within the range of 0.5 μM to 5 mM. The limit of detection (LOD) of 0.5 μM was reached at a signal-to-noise ratio of 3. The dipstick assay showed a good average recovery of 96–108 % with the RSD of less than 20 % in urine samples. The proposed method exhibited high specificity against other nucleotides such as the uridine triphosphate (UTP), cytidine triphosphate (CTP), and guanosine triphosphate (GTP). The results indicated that the dipstick strip may be considered as an inexpensive screening tool for onsite ATP determination.

A simple split aptamer fragments based sandwich-type dipstick assay was developed for ATP detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Wylen DG, Park TS, Rubio R, Berne RM. Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. J Cereb Blood Flow Metabol: Off J Int Soc Cereb Blood Flow Metabol. 1986;6(5):522–8. doi:10.1038/jcbfm.1986.97.

    Article  Google Scholar 

  2. Sweeney MI. Neuroprotective effects of adenosine in cerebral ischemia, window of opportunity. Neurosci Biobehav R. 1997;21(2):207–17. doi:10.1016/S0149-7634(96)00011-5.

    Article  CAS  Google Scholar 

  3. Gourine AV, Llaudet E, Dale N, Spyer KM. ATP is a mediator of chemosensory transduction in the central nervous system. Nature. 2005;436(7047):108–11. doi:10.1038/nature03690.

    Article  CAS  Google Scholar 

  4. Zinellu A, Sotgia S, Scanu B, Pisanu E, Sanna M, Usai MF, et al. Ultra-fast adenosine 5′-triphosphate, adenosine 5′-diphosphate and adenosine 5 '-monophosphate detection by pressure-assisted capillary electrophoresis UV detection. Electrophoresis. 2010;31(16):2854–7. doi:10.1002/elps.201000138.

    Article  CAS  Google Scholar 

  5. von Papen M, Gambaryan S, Schutz C, Geiger J. Determination of ATP and ADP secretion from human and mouse platelets by an HPLC assay. Transfus Med Hemother. 2013;40(2):109–16. doi:10.1159/000350294.

    Article  Google Scholar 

  6. zur Nedden S, Eason R, Doney AS, Frenguelli BG. An ion-pair reversed-phase HPLC method for determination of fresh tissue adenine nucleotides avoiding freeze-thaw degradation of ATP. Anal Biochem. 2009;388(1):108–14. doi:10.1016/j.ab.2009.02.017.

    Article  CAS  Google Scholar 

  7. Chen Y, Zhao J, Du JB, Xu GH, Tang CS, Geng B. Hydrogen sulfide regulates cardiac sarcoplasmic reticulum Ca2+ uptake via K-ATP channel and PI3K/Akt pathway. Life Sci. 2012;91(7–8):271–8. doi:10.1016/j.lfs.2012.07.026.

    Article  CAS  Google Scholar 

  8. Anwar M, Yaqoob M, Nabi A. Determination of adenosine 5 '-triphosphate by flow injection with luminol chemiluminescence detection using immobilized alkaline phosphatase enzyme reactor. J Chem Soc Pak. 2005;27(6):615–20.

    CAS  Google Scholar 

  9. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  Google Scholar 

  10. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. doi:10.1038/346818a0.

    Article  CAS  Google Scholar 

  11. Jarujamrus P, Amatatongchai M, Thima A, Khongrangdee T, Mongkontong C. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury. Spectrochim Acta A. 2015;142:86–93. doi:10.1016/j.saa.2015.01.084.

    Article  CAS  Google Scholar 

  12. Taghdisi SM, Danesh NM, Lavaee P, Ramezani M, Abnous K. An aptasensor for selective, sensitive and fast detection of lead(II) based on polyethyleneimine and gold nanoparticles. Environ Toxicol Pharmacol. 2015;39(3):1206–11. doi:10.1016/j.etap.2015.04.013.

    Article  CAS  Google Scholar 

  13. Lee SC, Gedi V, Ha NR, Cho JH, Park HC, Yoon MY. Development of receptor-based inhibitory RNA aptamers for anthrax toxin neutralization. Int J Biol Macromol. 2015;77:293–302. doi:10.1016/j.ijbiomac.2015.03.043.

    Article  CAS  Google Scholar 

  14. Wu SJ, Zhang H, Shi Z, Duan N, Fang CC, Dai SL, et al. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control. 2015;50:597–604. doi:10.1016/j.foodcont.2014.10.003.

    Article  CAS  Google Scholar 

  15. Brockmann C, Brockmann T, Dege S, Busch C, Kociok N, Vater A, et al. Intravitreal inhibition of complement C5a reduces choroidal neovascularization in mice. Graef Arch Clin Exp. 2015;253(10):1695–704. doi:10.1007/s00417-015-3041-z.

    Article  CAS  Google Scholar 

  16. Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol. 2011;56(2):95–113. doi:10.1016/j.survophthal.2010.08.006.

    Article  Google Scholar 

  17. Romhildt L, Pahlke C, Zorgiebel F, Braun HG, Opitz J, Baraban L, et al. Patterned biochemical functionalization improves aptamer-based detection of unlabeled thrombin in a sandwich assay. Acs Appl Mater Int. 2013;5(22):12029–35. doi:10.1021/am4038245.

    Article  Google Scholar 

  18. Lv ZZ, Liu JC, Bai WH, Yang SM, Chen AL. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer. Biosens Bioelectron. 2015;64:530–4. doi:10.1016/j.bios.2014.09.095.

    Article  CAS  Google Scholar 

  19. Li WY, Zhang QF, Zhou HP, Chen J, Li YX, Zhang CY, et al. Chemiluminescence detection of a protein through the aptamer-controlled catalysis of a porphyrin probe. Anal Chem. 2015;87(16):8336–41. doi:10.1021/acs.analchem.5b01511.

    Article  CAS  Google Scholar 

  20. Eid C, Palko JW, Katilius E, Santiago JG. Rapid slow off-rate modified aptamer (SOMAmer)-based detection of C-reactive protein using isotachophoresis and an ionic spacer. Anal Chem. 2015;87(13):6736–43. doi:10.1021/acs.analchem.5b00886.

    Article  CAS  Google Scholar 

  21. Pang YF, Rong Z, Wang JF, Xiao R, Wang SQ. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron. 2015;66:527–32. doi:10.1016/j.bios.2014.10.052.

    Article  CAS  Google Scholar 

  22. Zhang YW, Yu ZQ, Jiang F, Fu P, Shen JJ, Wu WX, Li JX (2015) Two DNA aptamers against avian influenza H9N2 virus prevent viral infection in cells. Plos One 10 (3). doi:ARTN e0123060 10.1371/journal.pone.0123060

  23. Abbaspour A, Norouz-Sarvestani F, Noon A, Soltani N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron. 2015;68:149–55. doi:10.1016/j.bios.2014.12.040.

    Article  CAS  Google Scholar 

  24. Bordeleau E, Purcell EB, Lafontaine DA, Fortier LC, Tamayo R, Burrusa V. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol. 2015;197(5):819–32. doi:10.1128/Jb.02340-14.

    Article  Google Scholar 

  25. Wu X, Zhao Z, Bai H, Fu T, Yang C, Hu X, et al. DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics. 2015;5(9):985–94. doi:10.7150/thno.11938.

    Article  CAS  Google Scholar 

  26. Lv ZZ, Liu JC, Zhou Y, Guan Z, Yang SM, Li C, et al. Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor. Chem Commun. 2013;49(48):5465–7. doi:10.1039/c3cc42801j.

    Article  CAS  Google Scholar 

  27. Liu F, Zhang JA, Chen R, Chen LL, Deng L. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chem Biodivers. 2011;8(2):311–6. doi:10.1002/cbdv.201000130.

    Article  CAS  Google Scholar 

  28. Zuo XL, Song SP, Zhang J, Pan D, Wang LH, Fan CH. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc. 2007;129(5):1042–3. doi:10.1021/ja067024b.

    Article  CAS  Google Scholar 

  29. Zhang SQ, Wang K, Li JL, Li ZY, Sun T. Highly efficient colorimetric detection of ATP utilizing a split aptamer target binding strategy and superior catalytic activity of graphene oxide-platinum/gold nanoparticles. RSC Adv. 2015;5(92):75746–52. doi:10.1039/c5ra13550h.

    Article  CAS  Google Scholar 

  30. Wu C, Yang SY, Wu ZY, Shen GL, Yu RQ. Split aptamer-based liquid crystal biosensor for ATP Assay. Acta Chim Sinica. 2013;71(3):367–70. doi:10.6023/A12110962.

    Article  CAS  Google Scholar 

  31. Liu XF, Shi L, Hua XX, Huang YQ, Su S, Fan QL, et al. Target-induced conjunction of split aptamer fragments and assembly with a water-soluble conjugated polymer for improved protein detection. Acs Appl Mater Int. 2014;6(5):3406–12. doi:10.1021/am405550j.

    Article  CAS  Google Scholar 

  32. Liu XF, Yang YH, Hua XX, Feng XM, Su S, Huang YQ, et al. An improved turn-on aptasensor for thrombin detection using split aptamer fragments and graphene oxide. Chinese J Chem. 2015;33(8):981–6. doi:10.1002/cjoc.201500123.

    Article  CAS  Google Scholar 

  33. Zhao T, Liu R, Ding XF, Zhao JC, Yu HX, Wang L, et al. Nanoprobe-enhanced, split aptamer-based electrochemical sandwich assay for ultrasensitive detection of small molecules. Anal Chem. 2015;87(15):7712–9. doi:10.1021/acs.analchem.5b01178.

    Article  CAS  Google Scholar 

  34. Sharma AK, Kent AD, Heemstra JM. Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem. 2012;84(14):6104–9. doi:10.1021/ac300997q.

    Article  CAS  Google Scholar 

  35. Liu JC, Bai WH, Niu SC, Zhu C, Yang SM, Chen AL (2014) Highly sensitive colorimetric detection of 17 beta-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep-Uk 4. doi:Artn 7571 10.1038/Srep07571

  36. Pappas MG. Rapid serodiagnosis of parasitic infections by Dot-ELISA using “dipsticks”. Trans R Soc Trop Med Hyg. 1986;80(6):1006.

    Article  CAS  Google Scholar 

  37. Bruno JG. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens. 2014;3(2):341–55. doi:10.3390/pathogens3020341.

    Article  CAS  Google Scholar 

  38. Wang C, Zhang L, Shen X. Development of a nucleic acid lateral flow strip for detection of hepatitis C virus (HCV) core antigen. Nucleosides, Nucleotides Nucleic Acids. 2013;32(2):59–68. doi:10.1080/15257770.2013.763976.

    Article  CAS  Google Scholar 

  39. Shen G, Zhang S, Hu X. Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates. Clin Biochem. 2013;46(16–17):1734–8. doi:10.1016/j.clinbiochem.2013.08.010.

    Article  CAS  Google Scholar 

  40. Shim WB, Kim MJ, Mun H, Kim MG. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron. 2014;62:288–94. doi:10.1016/j.bios.2014.06.059.

    Article  CAS  Google Scholar 

  41. Wang L, Ma W, Chen W, Liu L, Zhu Y, Xu L, et al. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosens Bioelectron. 2011;26(6):3059–62. doi:10.1016/j.bios.2010.11.040.

    Article  CAS  Google Scholar 

  42. Wang L, Chen W, Ma W, Liu L, Zhao Y, Zhu Y, et al. Fluorescent strip sensor for rapid determination of toxins. Chem Commun (Camb). 2011;47(5):1574–6. doi:10.1039/c0cc04032k.

    Article  CAS  Google Scholar 

  43. Zhao QL, Zhang Z, Xu L, Xia T, Li N, Liu JL, et al. Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection. Anal Bioanal Chem. 2014;406(12):2949–55. doi:10.1007/s00216-014-7705-z.

    Article  CAS  Google Scholar 

  44. Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron. 2015;71:230–42. doi:10.1016/j.bios.2015.04.041.

    Article  CAS  Google Scholar 

  45. Xu H, Mao X, Zeng QX, Wang SF, Kawde AN, Liu GD. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem. 2009;81(2):669–75. doi:10.1021/ac8020592.

    Article  CAS  Google Scholar 

  46. Liu GD, Mao X, Phillips JA, Xu H, Tan WH, Zeng LW. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem. 2009;81(24):10013–8. doi:10.1021/ac901889s.

    Article  CAS  Google Scholar 

  47. Akula KK, Kaur M, Bishnoi M, Kulkarni SK. Development and validation of an RP-HPLC method for the estimation of adenosine and related purines in brain tissues of rats. J Sep Sci. 2008;31(18):3139–47. doi:10.1002/jssc.200800316.

    Article  CAS  Google Scholar 

  48. Qian TX, Cai ZW, Yang MS. Determination of adenosine nucleotides in cultured cells by ion-pairing liquid chromatography-electrospray ionization mass spectrometry. Anal Biochem. 2004;325(1):77–84. doi:10.1016/j.ab.2003.10.028.

    Article  CAS  Google Scholar 

  49. Kiessling P, Scriba GKE, Suss F, Werner G, Knoth H, Hartmann M. Development and validation of a high-performance liquid chromatography assay and a capillary electrophoresis assay for the analysis of adenosine and the degradation product adenine in infusions. J Pharma Biomed. 2004;36(3):535–9. doi:10.1016/j.jpba.2004.07.005.

    Article  CAS  Google Scholar 

  50. Zinellu A, Pasciu V, Sotgia S, Scanu B, Berlinguer F, Leoni G, et al. Capillary electrophoresis with laser-induced fluorescence detection for ATP quantification in spermatozoa and oocytes. Anal Bioanal Chem. 2010;398(5):2109–16. doi:10.1007/s00216-010-4186-6.

    Article  CAS  Google Scholar 

  51. Huang HP, Tan YL, Shi JJ, Liang GX, Zhu JJ. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Nanoscale. 2010;2(4):606–12. doi:10.1039/b9nr00393b.

    Article  CAS  Google Scholar 

  52. Wang KY, Liao J, Yang XY, Zhao M, Chen M, Yao WR, et al. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron. 2015;63:172–7. doi:10.1016/j.bios.2014.07.022.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge the funding support from the Special Fund for Agro Scientific Research in the Public Interest (201203046, 201203023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailiang Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Chao Zhu and Yan Zhao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhao, Y., Yan, M. et al. A sandwich dipstick assay for ATP detection based on split aptamer fragments. Anal Bioanal Chem 408, 4151–4158 (2016). https://doi.org/10.1007/s00216-016-9506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9506-z

Keywords

Navigation