Skip to main content

Advertisement

Log in

A New Vector for Identification of Prokaryotes and Their Variable-Size Genomes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A large number of prokaryotes have been produced, so how to provide a means to describe and distinguish them accurately is becoming a key issue of prokaryotic taxonomy. We proposed an efficient algorithm to filter out most genome fragments that are horizontally transferred, and extracted a new genome vector (GV). To highlight the power of GV, we applied it to identify prokaryotes and their variable-size genome fragments. The result indicated that the new vector as species tags can accurately identify genome fragments as short as 3,000 bp at species level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cole JR, Chai B, Marsh TL et al (2003) The Ribosomal Database Project (RDP-II): previewing a new auto aligner that allows regular updates and the new prokaryote taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  2. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans 13:21–27

    Google Scholar 

  3. Diaz NN, Krause L, Goesmann A et al (2009) TACOA: taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics 10:56

    Article  PubMed  Google Scholar 

  4. Godfray HCJ (2002) Challenges for taxonomy. Nature 417:17–19

    Article  PubMed  CAS  Google Scholar 

  5. Holt JG, Krieg NR, Sneath PHA (1997) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  6. Karlin S, Brocchieri L, Mrazek J et al (1999) A chimeric prokaryotic ancestry of mitochondria and primitive eukaryotes. Proc Natl Acad Sci USA 96:9190–9195

    Article  PubMed  CAS  Google Scholar 

  7. Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11:283–290

    Article  PubMed  CAS  Google Scholar 

  8. Karlin S, Mrazek J, Ma J et al (2005) Predicted highly expressed genes in archaeal genomes. Proc Natl Acad Sci USA 102:7303–7308

    Article  PubMed  CAS  Google Scholar 

  9. Karlin S, Zhu ZY, Karlin KD (1997) The extended environment of mononuclear metal centers in protein structures. Proc Natl Acad Sci USA 94:14225–14230

    Article  PubMed  CAS  Google Scholar 

  10. McHardy AC, Martin HG, Tsirigos A et al (2007) Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 4:63–72

    Article  PubMed  CAS  Google Scholar 

  11. Mrazek J, Bhaya D, Grossman AR et al (2001) Highly expressed and alien genes of the Synechocystis genome. Nucleic Acids Res 29:1590–1601

    Article  PubMed  CAS  Google Scholar 

  12. Mrazek J, Karlin S (1999) Detecting alien genes in bacterial genomes. Ann N Y Acad Sci 870:314–329

    Article  PubMed  CAS  Google Scholar 

  13. Olsen GJ, Woese CR (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    PubMed  CAS  Google Scholar 

  14. Otsu N (1979) A threshold selection method from Gray-level Histogram. IEEE Trans Syst Man Cybern SMC 9:62–66

    Article  Google Scholar 

  15. Qi J, Luo H, Hao BL (2004) CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res 32:45–47

    Article  Google Scholar 

  16. Qi J, Wang B, Hao BL (2004) Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J Mol Evol 58:1–11

    Article  PubMed  CAS  Google Scholar 

  17. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  18. Yao Z, Ruzzo WL (2006) A regression-based K nearest neighbor algorithm for gene functions prediction from heterogeneous data. BMC Bioinformatics 7(Suppl 1):S11

    Article  PubMed  Google Scholar 

  19. Zhou FF, Olman V, Xu Y (2008) Barcodes for genomes and applications. BMC Bioinformatics 9:546

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Graduate Innovation Fund of Jilin University (20121101). We would like to thank the anonymous reviewers for their helpful comments on our work. We would also like to thank Dr. Xu, Y and Dr. Zhou F for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, T., Liu, F., Lin, C.X. et al. A New Vector for Identification of Prokaryotes and Their Variable-Size Genomes. Curr Microbiol 66, 96–101 (2013). https://doi.org/10.1007/s00284-012-0246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0246-9

Keywords

Navigation