Skip to main content
Log in

A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A one-year field study was conducted to determine the conversion ratio of phytoplankton biomass carbon (Phyto-C) to chlorophyll-a (Chl-a) in Jiaozhou Bay, China. We measured suspended particulate organic carbon (POC) and phytoplankton Chl-a samples collected in surface water monthly from March 2005 to February 2006. The temporal and spatial variations of Chl-a and POC concentrations were observed in the bay. Based on the field measurements, a linear regression model II was used to generate the conversion ratio of Phyto-C to Chl-a. In most cases, a good linear correlation was found between the observed POC and Chl-a concentrations, and the calculated conversion ratios ranged from 26 to 250 with a mean value of 56 µg µg−1. The conversion ratio in the fall was higher than that in the winter and spring months, and had the lowest values in the summer. The ratios also exhibited spatial variations, generally with low values in the near shore regions and relatively high values in offshore waters. Our study suggests that temperature was likely to be the main factor influencing the observed seasonal variations of conversion ratios while nutrient supply and light penetration played important roles in controlling the spatial variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson A. 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Mar. Ecol. Prog. Ser., 130: 85–96.

    Article  Google Scholar 

  • Banse K. 1977. Determining the Carbon-to-Chlorophyll ratio of natural phytoplankton. Mar. Biol., 41: 199–212.

    Article  Google Scholar 

  • Baruch D W. 1996a. Conversion of model I regression to model II regression and application to ANCOVA, Part I. http://homepages.caverock.net.nz/~dwbaruch/part1/index.html

  • Baruch D W. 1996b. Conversion of model I regression to model II regression and application to ANCOVA, Part II. http://homepages.caverock.net.nz/~dwbaruch/part2/index.html

  • Behrenfeld M J, Boss E, Siegel D A, Shea D M. 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles 19, GB1006, doi:10.1029/2004GB002299.

    Article  Google Scholar 

  • Cai A G, Li W Q, Chen Q H, Wang X. 1998. Studies of particulate organic carbon in the Xia Men Western Harbour and the Jiulong River Estuary. Mar. Sci. Sin., 5: 46–50. (in Chinese with English abstract)

    Google Scholar 

  • Chang J, Shiah F K, Gong G C, Chiang K P. 2003. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep-Sea Res., 50: 1 237–1 247.

    Google Scholar 

  • Cloern J E, Cole B E, Wong R L J, Alpine A E. 1985. Temporal dynamics of estuarine phytoplankton: a case study of San Francisco Bay. Hydrobiologia, 129: 153–176.

    Article  Google Scholar 

  • Eppley R W, Harrison W G, Chisolm S W, Stewart E. 1977. Particulate organic matter in surface waters off Southern California and its relationship to phytoplankton. J. Mar. Res., 35: 671–696.

    Google Scholar 

  • Falster D S, Warton D I, Wright I J. 2003a. User’s Guide to (S)MATR: Standardized Major Axis Tests and Routines. Version 1.0, http://www.bio.mq.edu.au/ecology/SMATR

  • Falster D S, Warton D L, Wright I J. 2003b. (S)MATR. Version 1.0, http://www.bio.mq.edu.au/ecology/SMATR

  • Furuya K. 1990. Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: vertical profiles of phytoplankton biomass and its relationship with chlorophyll a and particulate organic carbon. Mar. Biol., 107: 529–539.

    Article  Google Scholar 

  • Geider R J. 1987. Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol., 106: 1–34.

    Article  Google Scholar 

  • Geider R J, MacIntyre H L, Kana T M. 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser., 148: 187–200.

    Article  Google Scholar 

  • Gieskes W W C, Kraay G W. 1989. Estimating the carbon-specific growth rate of the major algal species groups in eastern Indonesian waters by 14C labeling of taxon-specific carotenoids. Deep-Sea Res., 36: 1 127–1 139.

    Article  Google Scholar 

  • Hewes C D, Sakshaug E, Holm-Hansen O, Reid F M H. 1990. Microbial autotrophic and heterotrophic eucaryotes in Antarctic Waters: relationships between biomass and CHL, ATP, and POC. Mar. Ecol. Prog. Ser., 63: 27–35.

    Article  Google Scholar 

  • Holligan P M, Harris R P, Newell R C, Harbour D S, Head R N, Linley E A S, Lucas M L, Tranter P R G, Weekley C M. 1984. Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Mar. Ecol. Prog. Ser., 14: 111–127.

    Article  Google Scholar 

  • Hung T C, Lin S H, Chuang A. 1980. Relationship among particulate organic carbon, chlorophyll a and primary productivity in the seawater along the northern coast of Taiwan. Acta Oceanogr. Taiwan, 11: 70–88.

    Google Scholar 

  • Laws E A, Archie J W. 1981. Appropriate use of regression analysis in marine biology. Mar. Biol., 65: 13–16.

    Article  Google Scholar 

  • Legendre L, Michaud J. 1999. Chlorophyll a to estimate the particulate organic carbon available as food to large zooplankton in the euphotic zone of oceans. J. Plankton Res., 21: 2 067–2 083.

    Google Scholar 

  • MacIntyre H L, Kana T M, Anning T, Geider R J. 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol., 38: 17–38.

    Article  Google Scholar 

  • Malone T C, Pike S E, Conley D J. 1993. Transient variations in phytoplankton productivity at the JGOFS Bermuda time series station. Deep-Sea Res., 40: 903–924.

    Article  Google Scholar 

  • Menzel D W, Ryther J H. 1964. The composition of particulate organic matter in the Western North Atlantic. Limnol. Oceanogr., 9: 176–186.

    Google Scholar 

  • Montagnes D J S, Berges J A, Harrison P J, Taylor F J R. 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr., 39: 1 044–1 060.

    Google Scholar 

  • Mullin M M, Sloan P R, Eppley R W. 1966. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr., 11: 307–311.

    Google Scholar 

  • Parsons T R. 1975. Particulate organic carbon in the sea. In: Riley J P, Skirrow G, eds. Chemical Oceanography. Academic Press, New York. p. 365-383.

    Google Scholar 

  • Redalje D G, Laws E A. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol., 62: 73–79.

    Article  Google Scholar 

  • Ricker W E. 1973. Linear regressions in fishery research. J. Fish. Res. Bd. Can., 30: 409–434.

    Google Scholar 

  • Schaefer C T, Lewin J. 1984. Persistent blooms of surf diatoms along the Pacific coast, USA. Mar. Biol., 83: 205–217.

    Article  Google Scholar 

  • Shen Z L. 2002. Long term changes in nutrient structure and its influences on ecology and environment in Jiaozhou Bay. Oceanol. Limnol. Sin., 33: 322–331. (in Chinese)

    Google Scholar 

  • Socal G, Boldrin A, Bianchi F, Civitarese G, Lazzari A, Rabitti De S, Totti C, Turchetto M M. 1999. Nutrient, particulate matter and phytoplankton variability in the photic layer of the Otranto strait. J. Mar. Syst., 20: 381–398.

    Article  Google Scholar 

  • Steele J H, Baird I E. 1962. Further relations between primary production, chlorophyll and particulate carbon. Limnol. Oceanogr., 7: 42–47.

    Article  Google Scholar 

  • Strathmann R R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr., 12: 411–418.

    Article  Google Scholar 

  • Strickland J D H Parsons T R. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can., 167: 1–310.

    Google Scholar 

  • Sun J, Liu D Y, Qian S B. 1999. Study on phytoplankton biomass I. Phytoplankton measurement biomass from cell volume or plasma volume. Acta. Oceanol. Sin., 21(2): 114–121. (in Chinese)

    Google Scholar 

  • Sun S, Zhang Y S, Wu Y L. 2005. Annual variation of primary productivity in Jiaozhou Bay. Oceanol. Limnol. Sin., 36(6): 481–486. (in Chinese)

    Google Scholar 

  • Suzumura M, Kokubun H, Arata N. 2004. Distribution and characteristics of suspended particulate matter in a heavily eutrophic estuary, Tokyo Bay, Japan. Mar. Pollut. Bull., 49: 496–503.

    Article  Google Scholar 

  • Taylor A H, Geider R J, Gilbert F J H. 1997. Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modeling study. Mar. Ecol. Prog. Ser., 152: 51–66.

    Article  Google Scholar 

  • Verlencar X N, Qasim S Z. 1985. Particulate organic matter in the coastal and estuarine waters of Goa and its relationship with phytoplankton production. Estuar. Coastal Shelf Sci., 21: 235–243.

    Article  Google Scholar 

  • Welschmeyer N A, Lorenzen C J. 1984. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates. Limnol. Oceanogr., 29: 135–145.

    Article  Google Scholar 

  • Wienke S M, Cloern J E. 1987. The phytoplankton component of seston in San Francisco Bay. J. Sea Res., 21: 25–33.

    Google Scholar 

  • Wu Y L, Sun S, Zhang Y S. 2005. Long-term change of environment and it’s influence on phytoplankton community structure in Jiaozhou Bay. Oceanol. Limnol. Sin., 36(6): 487–498. (in Chinese)

    Google Scholar 

  • Yang S L, Meng Y, Zhang J, Xue Y Z, Chen H T, Wei H, Liu Z, Wu R M, Wang L X, Yang H, Wang L, Zhang W X. 2003. Suspended particulate matter in the Jiaozhou Bay: properties and variations in response to hydrodynamics and pollution. Chinese Sci. Bull., 48: 2 493–2 498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boping Han  (韩博平).

Additional information

Supported by the Knowledge Innovation Project of Chinese Academy of Sciences (Nos. KZCX3-SW-214; KZCX-YW-213-3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, S., Wang, X. & Han, B. A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China. Chin. J. Ocean. Limnol. 27, 793–805 (2009). https://doi.org/10.1007/s00343-009-9221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9221-0

Keyword

Navigation