Skip to main content
Log in

Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum J. H. Owen, results in considerable yield losses for cucumber plants. A bio-organic fertilizer (BIO), which was a combination of manure composts with antagonistic microorganisms, and an organic fertilizer (OF) were evaluated for their efficiencies in controlling Fusarium wilt. Application of the BIO suppressed the disease incidence by 83% and reduced yield losses threefold compared with the application of OF. Analysis of microbial communities in rhizosphere soils by high-throughput pyrosequencing showed that more complex community structures were present in BIO than in OF treated soils. The dominant taxonomic phyla found in both samples were Proteobacteria, Firmicutes, Actinobacteria and Acidobacteria among bacteria and Ascomycota among fungi. Abundance of beneficial bacteria or fungi, such as Trichoderma, Hypoxylon, Tritirachium, Paenibacillus, Bacillus, Haliangium and Streptomyces, increased compared to the OF treatment, whereas the soil-borne pathogen, Fusarium, was markedly decreased. Overall, the results of this study demonstrate that the application of the BIO was a useful and effective approach to suppress Fusarium wilt and that the high-throughput 454 pyrosequencing was a suitable method for the characterization of microbial communities of rhizosphere soil of cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abo-elnaga HIG (2006) Bacillus subtilis as a biocontrol agent for controlling sugar beet damping-off disease. Egypt J Phytopathol 34:51–59

    Google Scholar 

  • Ahn IP, Chung HS, Lee YH (1997) Vegetative compatibility groups and pathogenicity among isolates of Fusarium oxysporum f. sp. cucumerinum. Plant Dis 82:244–246

    Article  Google Scholar 

  • Aislabie J, Jordan S, Ayton J, Klassen JL, Barker GM, Turner S (2009) Bacterial diversity associated with ornithogenic soil of the Ross Sea region, Antarctica. Can J Microbiol 55:21–36

    Article  PubMed  CAS  Google Scholar 

  • Augustinsky J, Kammeyer P, Husain A, Dehoog GS, Libertin CR (1990) Engyodontium album endocarditis. J Clin Microbiol 28:1479–1481

    PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Banks JC, Cary SC, Hogg ID (2009) The phylogeography of Adelie penguin faecal. Environ Microbiol 11:577–588

    Article  PubMed  CAS  Google Scholar 

  • Betzel C, Gourinath S, Kumar P, Kaur P, Perbandt M, Eschenburg S, Singh TP (2001) Structure of a serine protease proteinase K from Tritirachium album limber at 0.98 Å resolution. Biochemistry 40:3080–3088

    Article  PubMed  CAS  Google Scholar 

  • Bora T, Ozaktan H, Gore E, Aslan E (2004) Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Phytopathol 152:471–475

    Article  Google Scholar 

  • Borneman J, Skroch PW, O'ullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    PubMed  CAS  Google Scholar 

  • Borrero C, Ordovas J, Trillas MI, Aviles M (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biolog ®. Soil Biol Biochem 38:1631–1637

    Article  CAS  Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47:495–506

    Article  CAS  Google Scholar 

  • Christopher DJ, Raj TS, Rani SU, Udhayakumar R (2010) Role of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici. J Biopest 3:158–162

    Google Scholar 

  • Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned salmonella-infected pigs. Foodborne Pathog Dis 5:459–472

    Article  PubMed  CAS  Google Scholar 

  • Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol Control 40:118–127

    Article  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC Jr, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:1–13

    Article  Google Scholar 

  • El-Hassan SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • El-Kassas HY, Khairy HM (2009) A trial for biological control of a pathogenic fungus (Fusarium solani) by some marine microorganisms. Am-Euras J Agric Environ Sci 5:434–440

    Google Scholar 

  • Etebarian HR, Scott ES, Wicks TJ (2003) Evaluation of Streptomyces strains as potential biological control agents of Phytophthora erythroseotica. Iran J Plant Parh 39:46–63

    Google Scholar 

  • Filteau M, Lagace L, LaPointe G, Roy D (2010) Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries. Syst Appl Microbiol 33:165–173

    Article  PubMed  CAS  Google Scholar 

  • Fudou R, Iizuka T, Yamanaka S (2001) Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium: 1. Fermentation and biological characteristics. J Antibiot 54:149–152

    Article  PubMed  CAS  Google Scholar 

  • Fushimi S, Nishikawa S, Shimazu A, Seto H (1989) Studies on new phosphate ester antifungal antibiotics phoslactomycine I: taxonomy, fermentation, purification and biological activities. J Antibiot 42:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Gachomo EW, Kotchoni SO (2008) The use of Trichoderma harzianum and T. viride as potential biocontrol agents against peanut microflora and their effectiveness in reducing aflatoxin contamination of infected kernels. Biotechnology 7:439–447

    Article  Google Scholar 

  • Garbeva P, Veen JAV, Elsas JDV (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SMD, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R, Halpern A, Khouri H, Kravitz SA, Lauro FM, Li K, Rogers Y-H, Strausberg R, Sutton G, Tallon L, Thomas T, Venter E, Frazier M, Venter JC (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci 103:11240–11245

    Article  PubMed  CAS  Google Scholar 

  • Gunkel FA, Gassen HG (1989) Proteinase K from Tritirachium album Limber. Characterization of the chromosomal gene and expression of the cDNA in Escherichia coli. Eur J Biochem 179:185–194

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Lin X, Wang J, Shen W, Wu S, Peng S, Mao T (2010) Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere 20:586–593

    Article  CAS  Google Scholar 

  • Humblot C, Guyot J-P (2009) Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl Environ Microbiol 75:4354–4361

    Article  PubMed  CAS  Google Scholar 

  • Hwang BK, Ahn SJ, Moon SS (1994) Production, purification, and antifungal activity of the antibiotic nucleoside, tubercidin, produced by Streptomyces violaceoniger. Can J Bot 72:480–485

    Article  CAS  Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40:97–106

    Article  Google Scholar 

  • Jackson ML (1962) Soil chemical analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed  CAS  Google Scholar 

  • Jeon YH, Kim SG, Hwang I, Kim YH (2010) Effects of initial inoculation density of Paenibacillus polymyxa on colony formation and starch-hydrolytic activity in relation to root rot in ginseng. J Appl Microbiol 109:461–470

    PubMed  CAS  Google Scholar 

  • Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils — a review. Microb Ecol 33:443–453

    CAS  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 18:438–448

    Article  Google Scholar 

  • Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 12:1132–1143

    Article  PubMed  CAS  Google Scholar 

  • Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöverc P, Pühlera A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49

    Article  PubMed  Google Scholar 

  • Kundim BA, Itou Y, Sakagami Y, Fudou R, Iizuka T, Yamanaka S, Ojika M (2003) New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium. J Antibiot 56:630–638

    Article  PubMed  CAS  Google Scholar 

  • Landa BB, Hervfis A, Bettiol W, Jimnez-Dfaz RM (1997) Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25:305–318

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt ER, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, United Kingdom, pp 115–175

    Google Scholar 

  • Lang J, Hu J, Ran W, Xu Y, Shen Q (2011) Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol Fertil Soils. doi:10.1007/s00374-011-0617-6

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Liu H, Huang Y, He L, Miao X (2007) 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J Microb Biot 23:1265–1272

    Article  CAS  Google Scholar 

  • Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579

    Article  PubMed  CAS  Google Scholar 

  • Lim YW, Kim BK, Kim C, Jung HS, Kim B-S, Lee J-H, Chun J (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289

    Article  PubMed  Google Scholar 

  • Ling N, Xue C, Huang Q, Yang X, Xu Y, Shen Q (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 55:673–683

    Article  Google Scholar 

  • Loefler W, Tschen JS-M, Vanittankom N, Kugler M, Knorpp E, Hsieh T-F, Wu TG (1986) Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F-29-3 a comparison with activities of other Bacillus antibiotics. J Phytopathol 115:204–213

    Article  Google Scholar 

  • Luo J, Ran W, Hu J, Yang X, Xu Y, Shen Q (2009) Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J 74:2039–2048

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nat 437:376–380

    CAS  Google Scholar 

  • Mazzola M (2004) Assessment and management of soil community structure for disease suppression. Annu Rev Phytopathol 42:35–59

    Article  PubMed  CAS  Google Scholar 

  • Minuto A, Davide S, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Article  Google Scholar 

  • Moodie CD, Smith HW, Hausanbuiler RL (1963) Laboratory manual for soil fertility. Washington State University Dept. of Agronomy Pullman, Washington, USA

    Google Scholar 

  • Moore JM, Klose S, Tabatabai MA (2000) Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol Fertil Soils 31:200–210

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nourozian J, Etebarian HR, Khodakaramian G (2006) Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J Sci Technol 28:29–38

    Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  Google Scholar 

  • Omar I, O’Neill T, Rossall S (2006) Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol 55:92–99

    Article  CAS  Google Scholar 

  • Pavlou GC, Vakalounakis DJ (2005) Biological control of root and stem rot of greenhouse cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by lettuce soil amendment. Crop Prot 24:135–140

    Article  Google Scholar 

  • Pedersen BS, Mills NJ (2004) Single vs. multiple introduction in biological control: the roles of parasitoid efficiency, antagonism and niche overlap. J Appl Ecol 41:973–984

    Article  Google Scholar 

  • Poll C, Brune T, Begerow D, Kandeler E (2010) Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microb Ecol 59:130–140

    Article  PubMed  Google Scholar 

  • Randazzo CL, Torriani S, Akkermans AD, Vos WMD, Vaughan EE (2002) Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Appl Environ Microbiol 68:1882–1892

    Article  PubMed  CAS  Google Scholar 

  • Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F, Bue M (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Rojo FG, Reynoso MM, Ferez M, Chulze SN, Torres AM (2007) Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Prot 26:549–555

    Article  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Schabereiter-gurtner C, Pinar G, Lubitz W, Rolleke S (2001) Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Meth 47:345–354

    Article  CAS  Google Scholar 

  • Scheid D, Stubner S (2001) Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots. FEMS Microbiol Ecol 36:175–183

    Article  PubMed  CAS  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Schlingmann G, Milne L, Williams D, Carter G (1998) Cell wall active antifungal compounds produced by the marine fungus Hypoxylon oceanicum LL-15G256: II. Isolation and structure determination. J Antibiot 51:303–316

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  • Shekhar N, Bhattacharya D, Kumar D, Gupta RK (2006) Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2. Can J Microbiol 52:805–808

    Article  PubMed  CAS  Google Scholar 

  • Sivan A, Ucko O, Chet I (1987) Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis 71:587–592

    Article  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001

    Article  PubMed  Google Scholar 

  • Thirup L, Johansen A, Winding A (2003) Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microbiol Ecol 43:383–392

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, West PV, Gow NAR, Huffstutler RP (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Walkey A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  • Wang D, Li W, Zhang Y, Jiang Y, Wu W, Xu L, Jiang C (2004) A study on polyphasic taxonomy of one antifungal actinomycete strain YIM31530. J Yunnan Univ 26:265–269

    Google Scholar 

  • Wu H, Yang X, Fan J, Miao W, Ling N, Xu Y, Huang Q, Shen Q (2009) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 54:287–300

    Article  Google Scholar 

  • Yang C, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY (2004) Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143–150

    Article  CAS  Google Scholar 

  • Yu JQ (2001) Autotoxic potential of cucurbit crops: phenomenon, chemicals, mechanisms and means to overcome. J Crop Prod 4:335–348

    Article  CAS  Google Scholar 

  • Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W, Shen Q (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fert Soils 44:1073–1080

    Article  Google Scholar 

  • Zhao Q, Dong C, Yang X, Mei X, Ran W, Shen Q, Xu Y (2010) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the Agricultural Ministry of China (201103004), the Chinese Ministry of Science and Technology (2011BAD11B03) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. We also thank Majorbio Biotech Co., Ltd (Shanghai, China) for their help in sample sequencing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Shen.

Additional information

M. Qiu and R. Zhang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, M., Zhang, R., Xue, C. et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol Fertil Soils 48, 807–816 (2012). https://doi.org/10.1007/s00374-012-0675-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0675-4

Keywords

Navigation