Skip to main content
Log in

Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Bending analysis of micro-sized beams based on the Bernoulli-Euler beam theory is presented within the modified strain gradient elasticity and modified couple stress theories. The governing equations and the related boundary conditions are derived from the variational principles. These equations are solved analytically for deflection, bending, and rotation responses of micro-sized beams. Propped cantilever, both ends clamped, both ends simply supported, and cantilever cases are taken into consideration as boundary conditions. The influence of size effect and additional material parameters on the static response of micro-sized beams in bending is examined. The effect of Poisson’s ratio is also investigated in detail. It is concluded from the results that the bending values obtained by these higher-order elasticity theories have a significant difference with those calculated by the classical elasticity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Senturia S.D.: Microsystem Design. Kluwer, Boston (2001)

    Google Scholar 

  2. Cosserat, E., Cosserat, F.: Theory of deformable bodies. (Translated by D.H. Delphenich), Scientific Library, vol. 6. A. Herman and Sons, Paris, Sorbonne (1909)

  3. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Toupin R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Koiter W.T.: Couple stresses in the theory of elasticity. I and II. Proc. K. Ned. Akad. Wet (B) 67, 17–44 (1964)

    MATH  Google Scholar 

  7. Toupin R.A.: Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mindlin R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  9. Mindlin R.D., Eshel N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  10. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple microelastic solid-I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  12. Vardoulakis I., Exadaktylos G., Kourkoulis S.K.: Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects. J. Phys. IV 8, 399–406 (1998)

    Article  Google Scholar 

  13. Aifantis E.C.: Update on a class of gradient theories. Mech. Mater. 35, 2559–2580 (2003)

    Article  Google Scholar 

  14. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  15. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  16. Anthoine A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37, 1003–1018 (2000)

    Article  MATH  Google Scholar 

  17. Park S.K., Gao X.-L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  18. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  19. Ma H.M., Gao X.-L, Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  21. Papargyri-Beskou S., Polyzos D., Beskos D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751–3759 (2009)

    Article  MATH  Google Scholar 

  22. Wang B., Zhao J., Zhou S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 29, 591–599 (2009)

    Article  Google Scholar 

  23. Lazopoulos K.A., Lazopoulos A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A Solids 29, 837–843 (2010)

    Article  Google Scholar 

  24. Ma H.M., Gao X.-L, Reddy J.N.: A nonclassical Reddy-Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. Eng. 8, 167–180 (2010)

    Article  Google Scholar 

  25. Asghari, M., Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.: Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch. Appl. Mech. (2011). doi:10.1007/s00419-010-0452-5

  26. Kahrobaiyan M.H., Asghari M., Rahaeifard M., Ahmadian M.T.: Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1985–1994 (2011)

    Article  Google Scholar 

  27. Lim C.W.: Equilibrium and static deflection for bending of a nonlocal nanobeam. Adv. Vibr. Eng. 8, 277–300 (2009)

    Google Scholar 

  28. Lim C.W.: On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl. Math. Mech. 31, 37–54 (2010)

    Article  MATH  Google Scholar 

  29. Lazopoulos K.A.: On the gradient strain elasticity theory of plates. Eur. J. Mech. A Solids 23, 843–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lazopoulos K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36, 777–783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Papargyri-Beskou S., Beskos D.E.: Stability analysis of gradient elastic circular cylindrical thin shells. Int. J. Eng. Sci. 47, 1379–1385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen H.-S.: Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium. Phys. Lett. A 374, 4030–4039 (2010)

    Article  Google Scholar 

  33. Shen H.-S.: Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model. J. Theor. Biol. 264, 386–394 (2010)

    Article  Google Scholar 

  34. Akgöz, B., Civalek, Ö.: Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. J. Comput. Theor. Nanosci. (in press) (2011)

  35. Civalek Ö., Demir Ç., Akgöz B.: Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Comput. Appl. 15, 289–298 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. (2011). doi:10.1016/j.ijengsci.2010.12.009

  37. Civalek Ö., Akgöz B.: Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler-Bernoulli beam modeling. Sci. Iranica Trans. B Mech. Eng. 17, 367–375 (2010)

    MATH  Google Scholar 

  38. Artan R., Tepe A.: The initial values method for buckling nonlocal bars with application in nanotechnology. Eur. J. Mech. A Solids 27, 469–477 (2008)

    Article  MATH  Google Scholar 

  39. Reddy J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    Article  Google Scholar 

  40. Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  41. Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics. Blackie/ Chapman & Hall, London (1995)

    Google Scholar 

  42. Kong S., Zhou S., Nie Z., Wang K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. McElhaney K.W., Valssak J.J., Nix W.D.: Determination of indenter tip geometry and indentation contact area for depth sensing indentation experiments. J. Mater. Res. 13, 1300–1306 (1998)

    Article  Google Scholar 

  44. Nix W.D., Gao H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  45. Gurtin M.E., Murdoch A.I.: Effect of surface stress on wave propagation in solids. J. Appl. Phys. 47, 4414–4421 (1976)

    Article  Google Scholar 

  46. Wang G.F., Feng X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phy. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  47. Wang G.F., Feng X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D Appl. Phys. 42, 155411 (2009)

    Article  MathSciNet  Google Scholar 

  48. Wang G.F.: Effects of surface energy on the mechanical performance of nanosized beams. J. Comp. Theor. Nanosci. 8, 1–5 (2011)

    Article  Google Scholar 

  49. Lachut M.J., Sader J.E.: Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102 (2007)

    Article  Google Scholar 

  50. Papargyri-Beskou S., Beskos D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  51. Tsepoura K.G., Papargyri-Beskou S., Polyzos D., Beskos D.E.: Static and dynamic analysis of a gradient-elastic bar in tension. Arch. Appl. Mech. 72, 483–497 (2002)

    Article  MATH  Google Scholar 

  52. Akgöz, B.: Linear and nonlinear analysis of micro/nano structures based on higher-order continuum theories. M.Sc. thesis, Graduate School of Natural and Applied Sciences, Akdeniz University (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Civalek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akgöz, B., Civalek, Ö. Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82, 423–443 (2012). https://doi.org/10.1007/s00419-011-0565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0565-5

Keywords

Navigation