Skip to main content
Log in

Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Callus cultures of rubber tree may serve as an efficient model to screen and study environmental factors and phytohormones that stimulate laticifer cell differentiation and improve latex yield.

The number of laticifer cells in bark is one of the most important factors determining the biosynthesis and economic value of rubber trees (Hevea brasiliensis). The differentiation of laticifer cells in planta has been characterized, whereas laticifer-cell differentiation in callus cultures in vitro is largely unknown. In this study, we present molecular and physiological evidences for laticifer-cell differentiation in calli derived from rubber tree anthers. RT-PCR analysis showed that three key genes rubber elongation factor (REF), small rubber particle protein (SRPP), and cis-prenyl transferase (CPT) that are essential in latex biosynthesis in rubber tree bark also were transcribed in anther calli. Laticifer cell development in callus cultures was age-dependent; the cells began to appear at 58 days after initiation of culture, and the percentage of laticifer cells increased steadily with increasing callus age. Addition of 0–2 mg/L jasmonic acid (JA) to the media significantly promoted the differentiation of laticifer cells in callus cultures. However, JA concentrations higher than 3 mg/L were not optimum for laticifer cells differentiation; this result was not observed in previous in planta studies. Laticifer cells differentiated on media with pH 5.8–7.0, with an optimum of pH 6.2, whereas a higher pH inhibited differentiation. These results indicate that the anther-derived rubber tree callus may serve as a new and more efficient model to study environmental factors that influence laticifer cell differentiation, and may be useful for research on new technologies to improve latex yield, and to screen for commercially useful phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

KT:

6-Furfurylaminopurine

NAA:

1-Naphthaleneacetic acid

REF:

Rubber elongation factor

SRPP:

Small rubber particle protein

CPT:

cis-Prenyl transferase

JA:

Jasmonic acid

References

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40(1):311–331

    Article  Google Scholar 

  • Attanyaka DP, Kekwick RG, Franklin FC (1991) Molecular cloning and nucleotide sequencing of the rubber elongation factor gene from Hevea brasiliensis. Plant Mol Biol 16(6):1079–1081

    Article  CAS  PubMed  Google Scholar 

  • Chantuma P, Lacointe A, Kasemsap P, Thanisawanyangkura S, Gohet E, Clement A, Guilliot A, Ameglio T, Thaler P (2009) Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping. Tree Physiol 29(8):1021–1031

    CAS  PubMed  Google Scholar 

  • Chen YY, Wang LF, Dai LJ, Yang SG, Tian WM (2012) Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg Mol Biol Rep 39(4):3713–3719

    CAS  Google Scholar 

  • Chow KS, Wan KL, Isa MN, Bahari A, Tan SH, Harikrishna K, Yeang HY (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58(10):2429–2440

    CAS  PubMed  Google Scholar 

  • Chow KS, Mat-Isa MN, Bahari A, Ghazali AK, Alias H, Mohd-Zainuddin Z, Hoh CC, Wan KL (2012) Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot 63(5):1863–1871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Datta SK, De S (1986) Laticifer differentiation of Calotropis gigantea R. Br. ex Ait. in cultures. Ann Bot 57:403–406

    Google Scholar 

  • d’Auzac J, Jacob JL, Chrestin H (1989) Physiology of rubber tree latex. CRC Press Inc, Boca Raton

    Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13(12):631–639

    CAS  PubMed  Google Scholar 

  • Han KH, Shin DH, Yang J, Kim IJ, Oh SK, Chow KS (2000) Genes expressed in the latex of Hevea brasiliensis. Tree Physiol 20(8):503–510

    CAS  PubMed  Google Scholar 

  • Hao B-Z, Wu J-L (2000) Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Ann Bot 85(1):37–43

    CAS  Google Scholar 

  • Mahlberg PG (1993) Laticifers: an historical perspective. Bot Rev 59(1):1–23

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  • Oh SK, Kang H, Shin DH, Yang J, Chow KS, Yeang HY, Wagner B, Breiteneder H, Han KH (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274(24):17132–17138

    CAS  PubMed  Google Scholar 

  • Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177(4):877–888

    PubMed  Google Scholar 

  • Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007) Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19(11):3692–3704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raj S, Das G, Pothen J, Dey SK (2005) Relationship between latex yield of Hevea brasiliensis and antecedent environmental parameters. Int J Biometeorol 49(3):189–196

    PubMed  Google Scholar 

  • Sando T, Hayashi T, Takeda T, Akiyama Y, Nakazawa Y, Fukusaki E, Kobayashi A (2009) Histochemical study of detailed laticifer structure and rubber biosynthesis-related protein localization in Hevea brasiliensis using spectral confocal laser scanning microscopy. Planta 230(1):215–225

    CAS  PubMed  Google Scholar 

  • Silpi U, Thaler P, Kasemsap P, Lacointe A, Chantuma A, Adam B, Gohet E, Thaniswanyankura S, Ameglio T (2006) Effect of tapping activity on the dynamics of radial growth of Hevea brasiliensis trees. Tree Physiol 26(12):1579–1587

    PubMed  Google Scholar 

  • Singh AP, Wi SG, Chung GC, Kim YS, Kang H (2003) The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J Exp Bot 54(384):985–992

    CAS  PubMed  Google Scholar 

  • Stotz HU, Koch T, Biedermann A, Weniger K, Boland W, Mitchell-Olds T (2002) Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214(4):648–652

    CAS  PubMed  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8(6):e24260

    PubMed Central  PubMed  Google Scholar 

  • Tan D, Sun X, Zhang J (2011) Histochemical and immunohistochemical identification of laticifer cells in callus cultures derived from anthers of Hevea brasiliensis. Plant Cell Rep 30(6):1117–1124

    CAS  PubMed  Google Scholar 

  • Tang C, Qi J, Li H, Zhang C, Wang Y (2007) A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). J Biochem Biophys Methods 70(5):749–754

    CAS  PubMed  Google Scholar 

  • Triplett B (2000) Cotton ovule culture: a tool for basic biology, biotechnology and cotton improvement. Vitr Cell Dev Biol Plant 36(2):93–101

    Google Scholar 

  • Vaughn KC, Turley RB (1999) The primary walls of cotton fibers contain an ensheathing pectin layer. Protoplasma 209(3–4):226–237

    Google Scholar 

  • Verheye W (2010) Growth and production of rubber. In: Verheye W (ed) Land use, land cover and soil sciences. Encyclopedia of life support systems (EOLSS). UNESCO-EOLSS Publishers, Oxford

    Google Scholar 

  • Wang L, Wu J (2013) The essential role of jasmonic acid in plant-herbivore interactions—using the wild tobacco Nicotiana attenuata as a model. Ch J Genet Genomics 40(12):597–606

    CAS  Google Scholar 

  • Wang Y, Yang J, Qin Y, Qi J, Long X, Tang C (2013) Comparative study on the seasonal variation of latex physiological characters from three Hevea clone. Ch J Trop Crops 34(1):81–86

    Google Scholar 

  • Wititsuwannakul R, Pasitkul P, Kanokwiroon K, Wititsuwannakul D (2008) A role for a Hevea latex lectin-like protein in mediating rubber particle aggregation and latex coagulation. Phytochem 69(2):339–347

    CAS  Google Scholar 

  • Xiang Q, Xia K, Dai L, Kang G, Li Y, Nie Z, Duan C, Zeng R (2012) Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE. Plant Physiol Biochem 60:207–213

    CAS  PubMed  Google Scholar 

  • Yang ZP, Li HL, Guo D, Tian WM, Peng SQ (2012) Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis. Mol Biol Rep 39(4):4491–4497

    CAS  PubMed  Google Scholar 

  • Zhang ZL, Liu X, Li DF, Lu YT (2005) Determination of jasmonic acid in bark extracts from Hevea brasiliensis by capillary electrophoresis with laser-induced fluorescence detection. Anal Bioana Chem 382(7):1616–1619

    CAS  Google Scholar 

  • Zhao Y, Zhou LM, Chen YY, Yang SG, Tian WM (2011) MYC genes with differential responses to tapping, mechanical wounding, ethrel and methyl jasmonate in laticifers of rubber tree (Hevea brasiliensis Muell. Arg.). J Plant Physiol 168(14):1649–1658

    CAS  PubMed  Google Scholar 

  • Zhu JH, Li HL, Tu FZ, Tian WM, Peng SQ (2006) Cloning and molecular characterization of a RING zinc-finger gene of Hevea brasiliensis. J Plant Physiol Mol Biol 32(6):627–633

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31070637) and the National Nonprofit Institute Research Grant of CATAS-ITBB (ITBB110307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Sun, X. & Zhang, J. Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Planta 240, 337–344 (2014). https://doi.org/10.1007/s00425-014-2086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2086-2

Keywords

Navigation