Skip to main content
Log in

A graphene modified carbon ionic liquid electrode for voltammetric analysis of the sequence of the Staphylococcus aureus nuc gene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a voltammetric method for the detection of the nuc ssDNA sequence originating from Staphylococcus aureus by using a carbon ionic liquid electrode modified with electrodeposited three-dimensional graphene (3DGR). Probe ssDNA was electrostatically adsorbed on the modified electrode by a potentiostatic method. The porous structure and large surface area of 3DGR greatly increase the amount of immobilized probe ssDNA on the interface, which is beneficial for the reaction with target ssDNA. By using Methylene Blue (MB) as the electrochemical probe, the reduction peak current of MB (best measured at −0.30 V vs. SCE) can be used for detecting hybridization. The differential pulse voltammetric current of MB increases linearly in the 1.0 × 10−12 mol L−1 to 1.0 × 10−6 mol L−1 nuc concentration range, and the detection limit is 3.3 × 10−13 mol L−1 (at 3σ). The DNA sensor was successfully applied to the determination of the PCR product of the gene in pork.

Response of an electrochemical DNA biosensor based on the use of a carbon ionic liquid electrode modified with three-dimensional graphene. It enables sensitive voltammetric detection of the specific sequence of the Staphylococcus aureus nuc gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pividori MI, Merkoç A, Alegret S (2000) Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens Bioelectron 15:291–303

    Article  CAS  Google Scholar 

  2. Mao X, Liu GD, Biomed J (2008) Nanomaterial based electrochemical DNA biosensors and bioassays. Nanotechnology 4:419–431

    CAS  Google Scholar 

  3. Rasheed PA, Sandhyarani N (2017) Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments Pathath Abdul Rasheed Neelakandapillai Sandhyarani. Microchim Acta 184:981–1000

    Article  Google Scholar 

  4. Rasheed PA, Sandhyarani N (2017) Carbon nanostructures as immobilization platform for DNA: a review on current progress in electrochemical DNA sensors. Biosens Bioelectron 97:226–237

    Article  Google Scholar 

  5. Li JF, Lee EC (2017) Functionalized multi-wall carbon nanotubes as an efficient additive for electrochemical DNA sensor. Sensors Actuators B 239:652–659

    Article  CAS  Google Scholar 

  6. Gao NN, Gao F, He SY, Zhu QH, Huang JF, Tanaka H, Wang QX (2017) Graphene oxide directed in-situ deposition of electroactive silver nanoparticles and its electrochemical sensing application for DNA analysis. Anal Chim Acta 951:58–67

    Article  CAS  Google Scholar 

  7. Chen YH, Li YL, Yang Y, Wu FN, Cao J, Bai LJ (2017) A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for mycobacterium tuberculosis. Microchim Acta 184:1801–1808

    Article  CAS  Google Scholar 

  8. Bahadır EB, Sezgintürk MK (2016) Applications of graphene in electrochemical sensing and biosensing. Trac-Trend Anal Chem 76:1–14

    Article  Google Scholar 

  9. Xu JH, Wang YZ, Hu SS (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  10. Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212

    Article  CAS  Google Scholar 

  11. Sun W, Hou F, Gong SX, Han L, Wang WC, Shi F, Xi JW, Wang XL, Li GJ (2015) Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode. Sensors Actuators B Chem 219:331–337

    Article  CAS  Google Scholar 

  12. Yan Z, Yao W, Hu L, Liu D, Wang C, Lee CS (2015) Progress in preparation and application of three-dimensional graphene-based porous nano composites. Nano 7:5563–5577

    CAS  Google Scholar 

  13. Chen KW, Chen LB, Chen YQ, Bai H, Li L (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22:20968

    Article  CAS  Google Scholar 

  14. Sheng KX, Sun YQ, Li C, Yuan WJ, Shi GQ (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:247–253

    Article  Google Scholar 

  15. Wang XF, Niu XL, Sha HL, Shi F, Chen W, Ma DX, Sun W (2016) Application of platinum nanoparticles decorated three-dimensional graphene modified electrode for methanol electrooxidation. Int J Electrochem Sci 11:7395–7400

    Article  CAS  Google Scholar 

  16. Tian ZZ, Huang LX, Pei XB, Chen JY, Wang T, Yang T, Qin H, Sui L, Wang J (2017) Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: preparation and in vitro osteogenic activity evaluation. Colloids Surface B 155:150–158

    Article  CAS  Google Scholar 

  17. Shiddiky MJA, Torriero AAJ (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787

    Article  CAS  Google Scholar 

  18. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 65:2–16

    Article  Google Scholar 

  19. Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta 611:151–155

    Article  CAS  Google Scholar 

  20. Momeni S, Farrokhnia M, Karimi S, Nabipour I (2016) Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: a theoretical and experimental study. Iran J Chem Soc 13:1027–1035

    Article  CAS  Google Scholar 

  21. Shi F, Zheng WZ, Wang WC, Hou F, Lei BX, Sun ZF, Sun W (2015) Application of graphene–copper sulfide nanocomposite modified electrode for electrochemistry and electrocatalysis of hemoglobin. Biosens Bioelectron 64:131–137

    Article  CAS  Google Scholar 

  22. Niu XL, Zheng W, Yin CX, Weng WJ, Li GJ, Sun W, Men YL (2017) Electrochemical DNA biosensor based on gold nanoparticles and partially reduced graphene oxide modified electrode for the detection of listeria monocytogenes hly gene sequence. J Electroanal Chem 806:116–122

    Article  CAS  Google Scholar 

  23. Chen W, Niu XL, Li XY, Li XB, Li GJ, He BL, Li QT, Sun W (2017) Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode. Mater Sci Eng C-Mater 80:135–140

    Article  CAS  Google Scholar 

  24. Yan LJ, Wang XF, Li QT, Sun W (2016) Direct electrochemistry of horseradish peroxidase on NiO nanoflower modified electrode and its electrocatalytic activity. Croat Chem Acta 89:331–337

    Article  CAS  Google Scholar 

  25. Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22:055705

    Article  Google Scholar 

  26. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428

    Article  CAS  Google Scholar 

  27. Malard LM, Pimenta MA, Dresselhaus G (2009) Dresselhaus MS, Raman spectroscopy in graphene. Phys Rep-Rev Sec Phys Lett 473:51–87

    CAS  Google Scholar 

  28. Liu HT, Zhang L, Guo YL, Cheng C, Yang LJ, Jiang L, Yu G, Hu WP, Liu YQ, Zhu DB (2013) Reduction of grapheme oxide to highly conductive graphene by Lawesson's reagent and its electrical applications. J Mater Chem C 1:3104–3109

    Article  CAS  Google Scholar 

  29. Hou CY, Zhang QH, Li YG, Wang HZ (2012) Graphene-polymer hydrogels with stimulus-sensitive volume changes. Carbon 50:1959–1965

    Article  CAS  Google Scholar 

  30. Zhang QQ, Xu X, Li H, Xiong GP, Hu H, Fisher TS (2015) Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93:659–670

    Article  CAS  Google Scholar 

  31. Ruan CX, Li TT, Niu QJ, Lu M, Lou J, Gao WM, Sun W (2012) Electrochemical myoglobin biosensor based on graphene-ionic liquid-chitosan bionanocomposites: direct electrochemistry and electrocatalysis. Electrochim Acta 64:183–189

    Article  CAS  Google Scholar 

  32. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  33. Wang J, Rivas G, Luo D, Cai XH, Valera FS, Dontha N (1996) DNA-modified electrode for the detection of aromatic amines. Anal Chem 68:4365–4369

    Article  CAS  Google Scholar 

  34. Pan D, Zuo XL, Wan Y, Wang LH, Zhang J, Song SP, Fan CH (2007) Electrochemical interrogation of interactions between surface-confined DNA and methylene blue. Sensors 7:2671–2680

    Article  CAS  Google Scholar 

  35. Yang W, Ozsoz M, Hibbert DB, Gooding JJ (2002) Evidence for the direct interaction between methylene blue and guanine bases using DNA-modified carbon paste electrodes. Electroanalysis 14:1299–1302

    Article  CAS  Google Scholar 

  36. Yan LJ, Wang XL, Li GJ, Lu YX, Gao HW, Sun W (2016) Electrochemical DNA sensor for Adh 1 gene sequence from corn endogenous with carbon microsphere modified electrode. Int J Electrochem Sci 11:9790–9799

    Article  CAS  Google Scholar 

  37. Sun W, Lu YX, Wu YJ, Zhang YY, Wang P, Chen Y, Li GJ (2014) Electrochemical sensor for transgenic maize MON810 sequence with electrostatic adsorption DNA on electrochemical reduced graphene modified electrode. Sensors Actuators B Chem 202:160–166

    Article  CAS  Google Scholar 

  38. Qi XW, Gao HW, Zhang YY, Wang XZ, Chen Y, Sun W (2012) Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of staphylococcus aureus nuc gene sequence. Bioelectrochemistry 88:42–47

    Article  CAS  Google Scholar 

  39. Ensafi AA, Farfani NK, Amini M, Rezaei B (2017) Developing a sensitive DNA biosensor for the detection of flutamide using electrochemical method. J Iran Chem Soc 14:1325–1334

    Article  CAS  Google Scholar 

  40. Mandli J, Mohammadi H, Amine A (2017) Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles. Bioelectrochemistry 116:17–23

    Article  CAS  Google Scholar 

  41. Fatemeh A, Seifati SM, Nasirizadeh N (2017) Development of a DNA biosensor for detection of phenylketonuria based on screen-printed gold electrode and hematoxylin. Anal Methods 9:966–973

    Article  Google Scholar 

  42. Cai H, Cao X, Jiang Y, He P, Fang Y (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem 375:287–293

    Article  CAS  Google Scholar 

  43. Peng HP, Hu Y, Liu P, Deng YN, Chen W, Liu AL, Chen YZ, Lin XH (2015) Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on au nanoparticles/toluidine blue–graphene oxide nanocomposites. Sensors Actuators B Chem 207:269–276

    Article  CAS  Google Scholar 

  44. Wang L, Lin LQ, Xu XW, Weng SH, Lei Y, Liu AL, Chen YZ, Lin XH (2012) Electrochemical biosensor for detection of PML/RARα fusion gene based on eriochrome cyanine R film modified glassy carbon electrode. Electrochim Acta 69:56–59

    Article  CAS  Google Scholar 

  45. Ren Y, Jiao K, Xu GY, Sun W, Gao HW (2005) An electrochemical DNA sensor based on electrodepositing aluminum ion films on stearic acid-modified carbon paste electrode and its application for the detection of specific sequences related to bar gene and CP4 Epsps gene. Electroanalysis 17:2182–2189

    Article  CAS  Google Scholar 

  46. Jia F, Duan N, Wu SJ, Ma XY, Xia Y, Wang ZP, Wei XL (2014) Impedimetric aptasensor for Staphylococcus Aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181:967–974

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the National Natural Science Foundation of China (21665007), the Program for Innovative Research Team in University (IRT-16R19), the Natural Science Foundation of Hainan Province (2017CXTD007), the Key Science and Technology Program of Haikou City (2017042) and the Fundamental Research Funds for the Central Universities (30916014103) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 3934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Chen, W., Wang, X. et al. A graphene modified carbon ionic liquid electrode for voltammetric analysis of the sequence of the Staphylococcus aureus nuc gene. Microchim Acta 185, 167 (2018). https://doi.org/10.1007/s00604-018-2719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2719-4

Keywords

Navigation