Skip to main content
Log in

A molecular dynamics study on opioid activities of biphalin molecule

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of the biphalin molecule, (Tyr-D-Ala-Gly-Phe-NH)2, and the active tetrapeptide hydrazide, Tyr-D-Ala-Gly-Phe-NH-NH2 were performed to investigate the cause of the increased μ and δ receptor binding affinities of the former over the latter. The simulation results demonstrate that the acylation of the two equal tetrapeptide fragments of biphalin produces the constrained hydrazide bridges \( {\hbox{C}}_4^{\alpha } - {{\hbox{C}}_4}\prime - {{\hbox{N}}_9} - {{\hbox{N}}_{{10}}} \) and \( {{\hbox{N}}_9} - {{\hbox{N}}_{{10}}} - {{\hbox{C}}_5}\prime - {\hbox{C}}_5^{\alpha } \), which in turn increase the opportunity of conformations for binding to μ or δ receptors. Meanwhile, the connection of the two active tetrapeptide fragments of biphalin also results in the constrained side chain torsion angle χ2 at one of the two residues Phe. This constrained side chain torsion angle not only significantly increases the δ receptor binding affinity but also makes most of the δ receptor binding conformations of biphalin bind to the δ receptor through the fragment containing the mentioned residue Phe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Egan TM, North RA (1981) Both mu and delta opiate receptors exist on the same neuron. Science 214:923–924

    Article  CAS  Google Scholar 

  2. Rapaka RS, Porreca F (1991) Development of delta opioid peptides as nonaddicting analgesics. Pharm Res 8:1–8

    Article  CAS  Google Scholar 

  3. Traynor JR, Elliott J (1993) Delta-opioid receptor subtypes and cross-talk with mu-receptors. Trends Pharmacol Sci 14:84–86

    Article  CAS  Google Scholar 

  4. Jordan BA, Cvejic S, Devi LA (2000) Opioids and their complicated receptor complexes. Neuropsychopharmacology 23:S5–S18

    Article  CAS  Google Scholar 

  5. Ananthan S (2006) Opioid ligands with mixed mu/delta opioid receptor interactions: an emerging approach to novel analgesics. AAPS J 8:E118–E125

    Article  CAS  Google Scholar 

  6. Lipkowski AW, Konecka AM, Sroczynska I (1982) Double-enkephalin-synthesis, activity on guinea-pig ileum, and analgesic effect. Peptides 3:697–700

    Article  CAS  Google Scholar 

  7. Misicka A, Lipkowski AW, Horvath R, Davis P, Porreca F, Yamamura HI, Hruby VJ (1994) Delta-opioid receptor selective ligands; DPLPE-deltorphin chimeric peptide analogues. Int J Pept Protein Res 44:80–84

    Article  CAS  Google Scholar 

  8. Abbruscato TJ, Williams SA, Misicka A, Lipkowski AW, Hruby VJ, Davis TP (1996) Blood- to- central nervous system entry and stability of biphalin, a unique double-enkephalin analog, and its halogenated derivatives. J Pharmacol Exp Ther 276:1049–1057

    CAS  Google Scholar 

  9. Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP (1997) Brain and spinal cord distribution of biphalin: correlation with opioid receptor density and mechanism of CNS entry. J Neurochem 69:1236–1245

    Article  CAS  Google Scholar 

  10. Shimohigashi Y, Costa T, Chen HC, Rodbard D (1982) Dimeric tetrapeptide enkephalins display extraordinary selectivity for the delta opiate receptor. Nature 297:333–335

    Article  CAS  Google Scholar 

  11. Misicka A, Lipkowski AW, Horvath R, Davis P, Porreca F, Yamamura HI, Hruby VJ (1997) Structure-activity relationship of biphalin: the synthesis and biological activities of new analogues with modifications in position 3 and 4. Life Sci 60:1263–1269

    Article  CAS  Google Scholar 

  12. Silbert BS, Lipkowski AW, Cepeda MS, Szyfelbein SK, Osgood PF, Carr DB (1991) Analgesic activity of a novel bivalent opioid peptide compared to morphine via different routes of administration. Agents Actions 33:382–387

    Article  CAS  Google Scholar 

  13. Horan PJ, Mattia A, Bilsky EJ, Weber S, Davis TP, Yamamura HI, Malatynska E, Appleyard SM, Slaninova J, Misicka A, Lipkowski AW, Hruby VJ, Porreca F (1993) Antinociceptive profile of biphalin, a dimeric enkephalin analog. J Pharmacol Exp Ther 265:1446–1454

    CAS  Google Scholar 

  14. Yamazaki T, Ro S, Goodman M, Chung NN, Schiller PW (1993) A topochemical approach to explain morphiceptin bioactivity. J Med Chem 36:708–719

    Article  CAS  Google Scholar 

  15. Shenderovich MD, Liao S, Qian X, Hruby VJ (2000) A three-dimensional model of the delta-opioid pharmacophore: comparative molecular modeling of peptide and nonpeptide ligands. Biopolymers 53:565–580

    Article  CAS  Google Scholar 

  16. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  17. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  18. Flippen-Anderson JL, Deschamps JR, George C, Hruby VJ, Misicka A, Lipkowski AW (2002) Crystal structure of biphalin sulfate: a multireceptor opioid peptide. J Peptide Res 59:123–133

    Article  CAS  Google Scholar 

  19. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  20. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N∙Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  21. Lipkowski AW, Misicka A, Davis P, Stropova D, Janders J, Lachwa M, Porreca F, Yamamura HI, Hruby VJ (1999) Biological activity of fragments of the potent dimeric opioid peptide, biphalin. Bioorg Med Chem Lett 9:2763–2766

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided to this research by the National Science Council, Taiwan, under Grant Nos. 96-2628-E-159-001-MY3

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chuan Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, JY., Chiang, TY., Chen, JL. et al. A molecular dynamics study on opioid activities of biphalin molecule. J Mol Model 17, 2455–2464 (2011). https://doi.org/10.1007/s00894-010-0931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0931-1

Keywords

Navigation