Skip to main content
Log in

A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High-quality Prussian blue/reduced graphene oxide (PB/rGO) nanohybrids were synthesized via a simple polyvinylpyrrolidone (PVP)-assisted polyol reduction method under mild conditions. The structure and composition of PB/rGO were confirmed by means of X-ray diffraction (XRD), electron microscopes (SEM and transmission electron microscopy (TEM)), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). These results indicate that ratios of starting materials allow a good control on loading and morphology of PB/graphene hybrids, and at ratio of K3Fe(CN)6/GO of 1:2, PB nanocubes get completely embedded into the defect of porous graphene matrices. Electrochemcial characterization of the PB/rGO nanocomposites with different PB/rGO weight ratios was carried out by cyclic voltammograms and galvanostatic charge–discharge in 1.0 M KNO3 electrolyte. The PB/rGO nanocomposites exhibit much higher specific capacitances than either bare PB nanocrystals or pure rGO sheets. PB/rGO (1:2) exhibits the highest specific capacitance of 251.6 F g−1 at a scan rate of 10 mV s−1 and an excellent cycling stability along with 92 % specific capacitance retained after 1000 cycle tests. The significant enhancement in electrochemical performance over PB/rGO nanocomposites can be attributed to a positive synergetic effect that the PB nanocube interlocked dispersion of rGO sheets superimposes pseudocapacitance from PB on double-layer capacitance from rGO sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors. Scientific fundamentals and technological applications. Kluwer Academic Publishers Plenum Press, New York

    Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  3. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  4. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Article  CAS  Google Scholar 

  5. Lei Z, Christov N, Zhao XS (2011) Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ Sci 4:1866–1873

    Article  CAS  Google Scholar 

  6. Ma X, Liu M, Gan L, Zhao Y, Chen L (2013) Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17:2293–2301

    Article  CAS  Google Scholar 

  7. Zhibin L, Christov N, Li Li Z, Zhao XS (2011) Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J Mater Chem 21:2274–2281

    Article  Google Scholar 

  8. Zhibin L, Shiying B, Yi X, Liqin D, Lizhen A, Guangning Z, Qian X (2008) CMK-5 mesoporous carbon synthesized via chemical vapor deposition of ferrocene as catalyst support for methanol oxidation. J Phys Chem C 112:722–731

    Google Scholar 

  9. Gogotsi Y, Nikitin A, Ye HH, Zhou W, Fischer JE, Bo Y, Foley HC, Barsoum MW (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594

    Article  CAS  Google Scholar 

  10. Tsai W-Y, Gao P-C, Daffos B, Taberna P-L, Perez CR, Gogotsi Y, Favier F, Simon P (2013) Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors. Electrochem Commun 34:109–112

    Article  CAS  Google Scholar 

  11. Wang X, Liu L, Wang X, Bai L, Wu H, Zhang X, Yi L, Chen Q (2011) Preparation and performances of carbon aerogel microspheres for the application of supercapacitor. J Solid State Electrochem 15:643–648

    Article  CAS  Google Scholar 

  12. Lazzari M, Soavi F, Mastragostino M (2008) High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes. J Power Sources 178:490–496

    Article  CAS  Google Scholar 

  13. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482

    Article  CAS  Google Scholar 

  14. Sun YQ, Wu QO, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  15. Vivekchand S, Rout C, Subrahmanyam K, Govindaraj A, Rao CRN (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9–13

    Article  CAS  Google Scholar 

  16. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  17. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng ASCE 139:72–79

    Article  Google Scholar 

  18. Chen J, Huang K, Liu S, Hu X (2009) Electrochemical supercapacitor behavior of Ni3(Fe(CN)6)2(H2O) nanoparticles. J Power Sources 186:565–569

    Article  CAS  Google Scholar 

  19. Chen J, Huang K, Liu S (2008) Insoluble metal hexacyanoferrates as supercapacitor electrodes. Electrochem Commun 10:1851–1855

    Article  CAS  Google Scholar 

  20. Lisowska-Oleksiak A, Nowak AP (2007) Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors. J Power Sources 173:829–836

    Article  CAS  Google Scholar 

  21. Lu XJ, Dou H, Gao B, Yuan CZ, Yang SD, Hao L, Shen LF, Zhang XG (2011) A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim Acta 56:5115–5121

    Article  CAS  Google Scholar 

  22. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2:2164–2170

    Article  CAS  Google Scholar 

  23. Wilde RE, Ghosh SN, Marshall BJ (1970) Prussian blues. Inorg Chem 9:2512–2516

    Article  CAS  Google Scholar 

  24. Jin E, Lu X, Cui L, Chao D, Wang C (2010) Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim Acta 55:7230–7234

    Article  CAS  Google Scholar 

  25. Jiang YY, Zhang XD, Shan CS, Hua SC, Zhang QX, Bai XX, Dan L, Niu L (2011) Functionalization of graphene with electrodeposited Prussian blue towards amperometric sensing application. Talanta 85:76–81

    Article  CAS  Google Scholar 

  26. Cao L, Liu Y, Zhang B, Lu L (2010) In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl Mater Interfaces 2:2339–2346

    Article  CAS  Google Scholar 

  27. Mao Y, Bao Y, Wang W, Li Z, Li F, Niu L (2011) Layer-by-layer assembled multilayer of graphene/Prussian blue toward simultaneous electrochemical and SPR detection of H2O2. Talanta 85:2106–2112

    Article  CAS  Google Scholar 

  28. Zhang Y, Sun XM, Zhu LZ, Shen HB, Jia NQ (2011) Electrochemical sensing based on graphene oxide/Prussian blue hybrid film modified electrode. Electrochim Acta 56:1239–1245

    Article  CAS  Google Scholar 

  29. Zhao G, Feng J-J, Zhang Q-L, Li S-P, Chen H-Y (2005) Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chem Mater 17:3154–3159

    Article  CAS  Google Scholar 

  30. Qiu J-D, Peng H-Z, Liang R-P, Li J, Xia X-H (2007) Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2. Langmuir 23:2133–2137

    Article  CAS  Google Scholar 

  31. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  CAS  Google Scholar 

  32. Prakash A, Chandra S, Bahadur D (2012) Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon 50:4209–4219

    Article  CAS  Google Scholar 

  33. Wang S, Jiang SP, Wang X (2011) Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim Acta 56:3338–3344

    Article  CAS  Google Scholar 

  34. Bonanni A, Ambrosi A, Pumera M (2012) On oxygen-containing groups in chemically modified graphenes. Chem Eur J 18:4541–4548

    Article  CAS  Google Scholar 

  35. Shen X, Wu S, Liu Y, Wang K, Xu Z, Liu W (2009) Morphology syntheses and properties of well-defined Prussian blue nanocrystals by a facile solution approach. J Colloid Interface Sci 329:188–195

    Article  CAS  Google Scholar 

  36. Liu Q, Zhu X, Huo Z, He X, Liang Y, Xu M (2012) Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta 97:557–562

    Article  CAS  Google Scholar 

  37. Washio I, Xiong Y, Yin Y, Xia Y (2006) Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv Mater 18:1745–1749

    Article  CAS  Google Scholar 

  38. Ghosh D, Giri S, Mandal M et al (2014) High performance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite. RSC Adv 4(50):26094–26101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been sponsored by the National Natural Science Foundation of China (No. 21361020, 21361019), Enhance Comprehensive Strength Project of Ningxia University (8016-18), National Undergraduate Innovation Program of China (131074901), Project of State Key Laboratory of Catalysis, and Dalian Institute of Chemical Physics of The Chinese Academy of Sciences (N-09-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Dou, Y., Kang, H. et al. A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J Solid State Electrochem 19, 1621–1631 (2015). https://doi.org/10.1007/s10008-015-2785-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2785-z

Keywords

Navigation