Skip to main content
Log in

The effects of adjusting pulse anodization parameters on the surface morphology and properties of a WO3 photoanode for photoelectrochemical water splitting

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An ordered porous nanostructure provides a large reaction interface with an unusually high number of active sites, meaning that such a nanostructure is especially applicable to photoelectrochemical (PEC) water splitting. Therefore, we prepared WO3 films on W foil by pulsed anodization using square-pulse on/off voltage followed by calcination, and scrutinized the effects of reaction parameters—particularly the duty ratio, frequency, and F ion content—on the surface morphology and PEC behavior of the films. The WO3 films produced with a pulsed voltage of 50 V, a duty ratio of 20%, and a pulse frequency of 200 Hz in an electrolyte of 0.06 M NH4F showed an ordered and porous morphology. WO3 films prepared under optimized conditions yielded a water splitting photocurrent density of 1.33 mA cm−2 at a bias potential of 1.2 V when exposed to AM 1.5 G 1-sun illumination in 0.5 M Na2SO4 electrolyte. The high PEC activity of the ordered porous WO3 films can be attributed to their ordered porous nanostructure, which results in a much larger surface area than in compact or disordered porous structures. Moreover, the ordered porous WO3 films also exhibited excellent stability and a high incident-photon-to-charge conversion efficiency (IPCE) of 57.8% at 350 nm and a bias potential of 1.2 V. This research demonstrates that the pulsed anodization technique allows the controlled fabrication of porous WO3 nanostructures for application in PEC water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reyes-Gil KR, Stephens ZD, Stavila V, Robinson DB (2015) Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl Mater Interfaces 7:2202–2213

    Article  CAS  PubMed  Google Scholar 

  2. Kida T, Nishiyama A, Hua Z, Suematsu K, Yuasa M, Shimanoe K (2014) WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30:2571–2579

  3. Hu M, Zeng J, Wang W, Chen H, Qin Y (2011) Porous WO3 from anodized sputtered tungsten thin films for NO2 detection. Appl Surf Sci 258:1062–1068

    Article  CAS  Google Scholar 

  4. Yang Z, Ni X (2012) Photovoltaic hybrid films with polythiophene growing on monoclinic WO3 semiconductor substrates. Langmuir 28:4829–4834

  5. Pervez SA, Kim D, Doh C-H, Farooq U, Choi H-Y, Choi J-H (2015) Anodic WO3 mesosponge@carbon: a novel binder-less electrode for advanced energy storage devices. ACS Appl Mater Interfaces 7:7635–7643

  6. Liu C, Yang Y, Li W, Li J, Li Y, Shi Q, Chen Q (2015) Highly efficient photoelectrochemical hydrogen generation using ZnxBi2S3+x sensitized platelike WO3 photoelectrodes. ACS Appl Mater Interfaces 7:10763–10770

  7. Ng C, Ng YH, Iwase A, Amal R (2013) Influence of annealing temperature of WO3 in photoelectrochemical conversion and energy storage for water splitting. ACS Appl Mater Interfaces 5:5269–5275

  8. Singh T, Müller R, Singh J, Mathur S (2015) Tailoring surface states in WO3 photoanodes for efficient photoelectrochemical water splitting. Appl Surf Sci 347:448–453

    Article  CAS  Google Scholar 

  9. Cui X, Shi J, Chen H, Zhang L, Guo L, Gao J, Li J (2008) Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. J Phys Chem B 112:12024–12031

  10. Nam KM, Cheon EA, Shin WJ, Bard AJ (2015) Improved photoelectrochemical water oxidation by the WO3/CuWO4 composite with a manganese phosphate electrocatalyst. Langmuir 31:10897–10903

  11. Patrocinio AOT, Paula LF, Paniago RM, Freitag J, Bahnemann DW (2014) Layer-by-layer TiO2/WO3 thin films as efficient photocatalytic self-cleaning surfaces. ACS Appl Mater Interfaces 6:16859–16866

    Article  CAS  PubMed  Google Scholar 

  12. Zhang G, Guan W, Shen H, Zhang X, Fan W, Lu C, Bai H, Xiao L, Gu W, Shi W (2014) Organic additives-free hydrothermal synthesis and visible-light-driven photodegradation of tetracycline of WO3 nanosheets. Ind Eng Chem Res 53:5443–5450

  13. Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF (2014) Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 4:3724–3729

  14. Arutanti O, Nandiyanto ABD, Ogi T, Kim TO, Okuyama K (2015) Influences of porous structurization and Pt addition on the improvement of photocatalytic performance of WO3 particles. ACS Appl Mater Interfaces 7:3009–3017

  15. DePuccio DP, Botella P, O’Rourke B, Landry CC (2015) Degradation of methylene blue using porous WO3, SiO2–WO3, and their Au-loaded analogs: adsorption and photocatalytic studies. ACS Appl Mater Interfaces 7:1987–1996

  16. Tolod KR, Hernández S, Russo N (2017) Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges. Catalysts 7:13

  17. Liu Y, Li Y, Li W, Han S, Liu C (2012) Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light. Appl Surf Sci 258:5038–5045

  18. Zhao W, Wang Z, Shen X, Li J, Xu C, Gan Z (2012) Hydrogen generation via photoelectrocatalytic water splitting using a tungsten trioxide catalyst under visible light irradiation. Int J Hydrog Energy 37:908–915

    Article  CAS  Google Scholar 

  19. Kim JK, Shin K, Choi D-G, Park JH (2011) Fabrication and photocatalytic effects of tungsten trioxide nano-pattern arrays. Mater Express 1:245–251

  20. Mi Q, Coridan RH, Brunschwig BS, Gray HB, Lewis NS (2013) Photoelectrochemical oxidation of anions by WO3 in aqueous and nonaqueous electrolytes. Energy Environ Sci 6:2646–2653

  21. Yang C, Zhu Q, Zhang S, Zou Z, Tian K, Xie C (2014) A comparative study of microstructures on the photoelectric properties of tungsten trioxide films with plate-like arrays. Appl Surf Sci 297:116–124

    Article  CAS  Google Scholar 

  22. Liu Y, Li J, Li W, Yang Y, Li Y, Chen Q (2015) Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J Phys Chem C 119:14834–14842

  23. Weinhardt L, Blum M, Bär M, Heske C, Cole B, Marsen B, Miller EL (2008) Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J Phys Chem C 112:3078–3082

  24. Vasilopoulou M, Kostis I, Vourdas N, Papadimitropoulos G, Douvas A, Boukos N, Kennou S, Davazoglou D (2014) Influence of the oxygen substoichiometry and of the hydrogen incorporation on the electronic band structure of amorphous tungsten oxide films. J Phys Chem C 118:12632–12641

    Article  CAS  Google Scholar 

  25. Choi Y-W, Kim S, Seong M, Yoo H, Choi J (2015) NH4-doped anodic WO3 prepared through anodization and subsequent NH4OH treatment for water splitting. Appl Surf Sci 324:414–418

  26. Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA (2011) Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes. Langmuir 27:7276–7284

  27. Ou JZ, Rani RA, Balendhran S, Zoolfakar AS, Field MR, Zhuiykov S, O’Mullane AP, Kalantar-zadeh K (2013) Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochem Commun 27:128–132

  28. Zheng Q, Lee C (2014) Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. Electrochim Acta 115:140–145

    Article  CAS  Google Scholar 

  29. Syrek K, Zych M, Zaraska L, Sulka GD (2017) Influence of annealing conditions on anodic tungsten oxide layers and their photoelectrochemical activity. Electrochim Acta 231:61–68

    Article  CAS  Google Scholar 

  30. Altomare M, Pfoch O, Tighineanu A, Kirchgeorg R, Lee K, Selli E, Schmuki P (2015) Molten o-H3PO4: a new electrolyte for the anodic synthesis of self-organized oxide structures—WO3 nanochannel layers and others. J Am Chem Soc 137:5646–5649

  31. Tsuchiya H, Macak JM, Sieber I, Taveira L, Ghicov A, Sirotna K, Schmuki P (2005) Self-organized porous WO3 formed in NaF electrolytes. Electrochem Commun 7:295–298

    Article  CAS  Google Scholar 

  32. Jeong SH, Im HL, Hong S, Park H, Baek J, Dong HP, Kim S, Hong YK (2017) Massive, eco-friendly, and facile fabrication of multi-functional anodic aluminum oxides: application to nanoporous templates and sensing platforms. RSC Adv 7:4518–4530

    Article  CAS  Google Scholar 

  33. Hao Q, Huang H, Fan X, Hou X, Yin Y, Li W, Si L, Nan H, Wang H, Mei Y (2017) Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology 28:105301

    Article  CAS  PubMed  Google Scholar 

  34. Chung CK, Dhandapani D, Syu CJ, Liao MW, Chu BY, Kuo EH (2017) Role of oxalate anions on the evolution of widened pore diameter and characteristics of room-temperature anodic aluminum oxide. J Electrochem Soc 164:C121–C127

    Article  CAS  Google Scholar 

  35. Nebol’sin VA, Spiridonov BA, Dunaev AI, Bogdanovich EV (2017) Preparation of nanoporous titanium oxide films by electrochemical anodic oxidation. Inorg Mater 53:595–601

    Article  Google Scholar 

  36. Li S, Zhang G, Guo D, Yu L, Zhang W (2009) Anodization fabrication of highly ordered TiO2 nanotubes. J Phys Chem C 113:12759–12765

    Article  CAS  Google Scholar 

  37. Stergiopoulos T, Valota A, Likodimos V, Speliotis T, Niarchos D, Skeldon P, Thompson GE, Falaras P (2009) Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. Nanotechnology 20:365601

    Article  CAS  PubMed  Google Scholar 

  38. Stępniowski WJ, Bojar Z (2011) Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features. Surf Coat Technol 206:265–272

    Article  CAS  Google Scholar 

  39. Takenaga A, Kikuchi T, Natsui S, Suzuki RO (2015) Self-ordered aluminum anodizing in phosphonoacetic acid and its structural coloration. ECS Solid State Lett 4:P55–P58

  40. Wei W, Shaw S, Lee K, Schmuki P (2012) Rapid anodic formation of high aspect ratio WO3 layers with self-ordered nanochannel geometry and use in photocatalysis. Chem Eur J 18:14622–14626

  41. Wang X, Zhang S, Sun L (2011) A two-step anodization to grow high-aspect-ratio TiO2 nanotubes. Thin Solid Films 519:4694–4698

    Article  CAS  Google Scholar 

  42. Yoo JE, Lee K, Altomare M, Selli E, Schmuki P (2013) Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. Angew Chem Int Ed 52:7514–7517

    Article  CAS  Google Scholar 

  43. Yoo J, Lee K, Schmuki P (2013) Dewetted au films form a highly active photocatalytic system on TiO2 nanotube-stumps. Electrochem Commun 34:351–355

    Article  CAS  Google Scholar 

  44. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114:9385–9454

    Article  PubMed  Google Scholar 

  45. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18

    Article  CAS  Google Scholar 

  46. Chung CK, Chu BY, Tsai CH, Hsu CR (2017) Photoluminescence enhancement of nanoporous alumina using one-step anodization of high- and low-purity aluminum at room temperature. Mater Lett 190:157–160

    Article  CAS  Google Scholar 

  47. Chung CK, Tsai CH, Hsu CR, Kuo EH, Chen Y, Chung IC (2017) Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature. Corros Sci 125:40–47

  48. Lee W, Scholz R, Gösele U (2008) A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Lett 8:2155–2160

  49. Chanmanee W, Watcharenwong A, Chenthamarakshan CR, Kajitvichyanukul P, de Tacconi NR, Rajeshwar K (2008) Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. J Am Chem Soc 130:965–974

    Article  CAS  PubMed  Google Scholar 

  50. Chen Y, Santos A, Wang Y, Kumeria T, Li J, Wang C, Losic D (2015) Biomimetic nanoporous anodic alumina distributed Bragg reflectors in the form of films and microsized particles for sensing applications. ACS Appl Mater Interfaces 7:19816–19824

  51. Wang Y, Chen Y, Kumeria T, Ding F, Evdokiou A, Losic D, Santos A (2015) Facile synthesis of optical microcavities by a rationally designed anodization approach: tailoring photonic signals by nanopore structure. ACS Appl Mater Interfaces 7:9879–9888

  52. Kim WT, Choi WY (2017) Fabrication of TiO2 photonic crystal by anodic oxidation and their optical sensing properties. Sensor Actuat A Phys 260:178–184

  53. Kim D-J, Ahn Y, Lee S-H, Kim Y-K (2006) Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass. Int J Mach Tool Manu 46:1064–1067

    Article  Google Scholar 

  54. Zhang X, Chandra D, Kajita M, Takahashi H, Li D, Shoji A, Saito K, Yui T, Yagi M (2014) Facile and simple fabrication of an efficient nanoporous WO3 photoanode for visible-light-driven water splitting. Int J Hydrog Energy 39:20736–20743

  55. Zeng Q, Li J, Bai J, Li X, Xia L, Zhou B (2017) Preparation of vertically aligned WO3 nanoplate array films based on peroxotungstate reduction reaction and their excellent photoelectrocatalytic performance. Appl Catal B 202:388–396

  56. Ismail S, Chai YN, Ahmadi E, Razak KA, Lockman Z (2016) Segmented nanoporous WO3 prepared via anodization and their photocatalytic properties. J Mater Res 31:1–8

    Article  CAS  Google Scholar 

  57. Li W, Jie L, Xuan W, Sha L, Xiao J, Chen Q (2010) Visible light photoelectrochemical responsiveness of self-organized nanoporous WO3 films. Electrochim Acta 56:620–625

    Article  CAS  Google Scholar 

  58. Reyes-Gil KR, Wiggenhorn C, Brunschwig BS, Lewis NS (2013) Comparison between the quantum yields of compact and porous WO3 photoanodes. J Phys Chem C 117:14947–14957

  59. Chai Y, Tam CW, Beh KP, Yam FK, Hassan Z (2015) Effects of thermal treatment on the anodic growth of tungsten oxide films. Thin Solid Films 588:44–49

    Article  CAS  Google Scholar 

  60. Chai YN, Razak KA, Lockman Z (2015) Effect of annealing temperature on anodized nanoporous WO3. J Porous Mater 22:537–544

    Article  CAS  Google Scholar 

  61. Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH (2016) Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem 55:11819–11823

  62. Liu Y, Chen P, Chen Y, Lu H, Wang J, Yang Z, Lu Z, Li M, Fang L (2016) In situ ion-exchange synthesis of SnS2/g-C3N4 nanosheets heterojunction for enhancing photocatalytic activity. RSC Adv 6:10802–10809

    Article  CAS  Google Scholar 

  63. Liu Y, Geng P, Wang J, Yang Z, Lu H, Hai J, Lu Z, Fan D, Li M (2017) In-situ ion-exchange synthesis Ag2S modified SnS2 nanosheets toward highly photocurrent response and photocatalytic activity. J Colloid Interface Sci 512:784

  64. Pan JH, Sun DD, Lee C, Kim YJ, Lee WI (2010) Effect of calcination temperature on the textural properties and photocatalytic activities of highly ordered cubic mesoporous WO3/TiO2 films. J Nanosci Nanotech 10:4747–4751

  65. Kamal H, Akl AA, Abdel-Hady K (2004) Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films. Physica B 349:192–205

    Article  CAS  Google Scholar 

  66. Li W, Li J, Wang X, Ma J, Chen Q (2010) Photoelectrochemical and physical properties of WO3 films obtained by the polymeric precursor method. Int J Hydrog Energy 35:13137–13145

    Article  CAS  Google Scholar 

  67. Hernández S, Saracco G, Barbero G, Alexe-Ionescu AL (2017) Role of the electrode morphology on the optimal thickness of BiVO4 anodes for photoelectrochemical water splitting cells. J Electroanal Chem 799:481–486

    Article  CAS  Google Scholar 

  68. Vidyarthi VS, Hofmann M, Savan A, Sliozberg K, König D, Beranek R, Schuhmann W, Ludwig A (2011) Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering. Int J Hydrog Energy 36:4724–4731

    Article  CAS  Google Scholar 

  69. Nukui Y, Srinivasan N, Shoji S, Atarashi D, Sakai E, Miyauchi M (2015) Vertically aligned hexagonal WO3 nanotree electrode for photoelectrochemical water oxidation. Chem Phys Lett 635:306–311

    Article  CAS  Google Scholar 

  70. Ederth J, Hoel A, Niklasson GA, Granqvist CG (2004) Small polaron formation in porous WO3−x nanoparticle films. J Appl Phys 96:5722–5726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21363006, 21503051), the Natural Science Foundation of Guangxi (2015GXNSFBA139029, 2016GXNSFAA380121, 2016GXNSFAA380219) and Guilin Scientific Research and Technology Development Projects (KY2015ZL109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangwang Le or Yongping Liu.

Electronic supplementary material

ESM 1

(DOCX 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Yan, Y., Zhang, M. et al. The effects of adjusting pulse anodization parameters on the surface morphology and properties of a WO3 photoanode for photoelectrochemical water splitting. J Solid State Electrochem 22, 2169–2181 (2018). https://doi.org/10.1007/s10008-018-3911-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-3911-5

Keywords

Navigation