Skip to main content
Log in

A 0.52 ppm/°C high-order temperature-compensated voltage reference

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposed a new high-order curvature compensation technique for a new bandgap voltage reference structure using the temperature characteristics of current gain β and emitter bandgap narrowing factor ΔE G of a lateral NPN bipolar transistor. The new structure can produce two voltage references, which are 1.209 and 2.418 V, respectively. The simulation results show that the temperature coefficients of the two output voltage are 0.52 ppm/°C, the PSRR is more than 60 dB for frequencies at 10 kHz, and the circuit dissipates 0.18 mW with 5-V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rincon-Mora, G. A. (2001). Voltage references from diodes to precision high-order bandgap circuits. New York: Wiley-IEEE Press.

    Google Scholar 

  2. Leung, K. N., & Mok, P. K. T. (2002). A Sub-1-v 15-ppm/°C CMOS Bandgap voltage reference without requiring low threshold voltage device. IEEE Journal of Solid-State Circuits, 37(4), 526–530. doi:10.1109/4.991391.

    Article  Google Scholar 

  3. Leung, C. Y., Leung, K. N., & Mok, P. K. T. (2004). Design of a 1.5-V high-order curvature-compensated CMOS bandgap reference. Proceedings of the 2004 International Symposium on Circuits and Systems (Vol. 1, pp. 48–52). doi:10.1109/ISCAS.2004.1328128.

  4. Rincon-Mora, G. A., & Allen, P. E. (1994). A 1.1 V current-mode and piecewise linear curvature corrected bandgap reference. IEEE Journal of Solid-State Circuit, 33(10), 1551–1554.

    Article  Google Scholar 

  5. Popa, C. (2005). CMOS logarithmic curvature-corrected voltage reference using a multiple differential structure. In ISSCS 2005 International Symposium on Signals, Circuits and Systems (Vol. 2, pp. 413–416).

  6. Ahuja, B. K., Vu, H., Laber, C. A., & Owen, W. H. (2005). A very high precision 500-nA CMOS floating-gate analog voltage reference. IEEE Journal of Solid-State Circuits, 40(12), 2364–2372. doi:10.1109/JSSC.2005.856268.

    Article  Google Scholar 

  7. Lee, I., Kim, G., & Kim, W. (1994). Exponential curvature-compensated BiCMOS bandgap references. IEEE Journal of Solid-State Circuit, 29(11), 1396–1403. doi:10.1109/4.328634.

    Google Scholar 

  8. Dillard, W. C., & Jaeger, R. C. (1987). The temperature dependence of the amplification factor of bipolar-junction transistor. IEEE Transactions on Electron Devices, 34, 139–142. doi:10.1109/T-ED.1987.22896.

    Article  Google Scholar 

  9. Lindholm, F. A., & Hamilton, D. J. (1971). Incorporation of the early effect in the Ebers-Moll model. Proceedings of the IEEE, 59, 1377–1378. doi:10.1109/PROC.1971.8435.

    Article  Google Scholar 

  10. Jaeger, R. C., & Brodersen, A. J. (1997). Self consistent bipolar transistor modes for computer simulation. Solid-State Electronics, 21, 1269–1272. doi:10.1016/0038-1101(78)90377-5.

    Article  Google Scholar 

  11. Lanyon, H. P. D., & Tuft, R. A. (1978). Bandgap narrowing in heavily doped silicon. International Electron Devices Meeting, 24, 316–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, Z., Luo, P. et al. A 0.52 ppm/°C high-order temperature-compensated voltage reference. Analog Integr Circ Sig Process 62, 17–21 (2010). https://doi.org/10.1007/s10470-009-9317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9317-7

Keywords

Navigation