Skip to main content
Log in

A 5.25-GHz low-power down-conversion mixer in 0.18-μm CMOS technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 5.25 GHz low voltage, high linear and isolated mixer using TSMC 0.18 μm CMOS process for WLAN receiver was investigated. The paper presents a novel topology mixer that leads to better performance in terms of linearity, isolation and power consumption for low supply voltage. The measuring results of the proposed mixer achieve: 7.6 dB power conversion gain, 11.4 dB double side band noise figure, 3 dBm input third-order intercept point, and the total dc power consumption of this mixer including output buffers is 2.45 mW from a 1 V supply voltage. The current output buffer is about 2 mW, the excellent LO-RF, LO-IF and RF-IF isolation achieved up to 37.8, 54.8 and 38.2 dB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. IEEE 802.11a. (1999). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band, IEEE Std 802.11a.

  2. Manku, T. (1999). Microwave CMOS—Device physics and design. IEEE Journal of Solid-State Circuits, 34(3), 277–285.

    Article  Google Scholar 

  3. Kim, T. W., Kim, B., & Lee, K. (2004). Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors. IEEE Journal of Solid-State Circuits, 39(1), 223–229.

    Article  Google Scholar 

  4. Lee, S. G., & Choi, J. K. (2000). Current-reuse bleeding mixer. IEE Electronics Letters, 36(8), 696–697.

    Article  Google Scholar 

  5. Darabi, H., & Abidi, A. A. (2000). Noise in RF-CMOS mixer: A simple physical model. IEEE Journal of Solid-State Circuits, 35(1), 15–25.

    Article  Google Scholar 

  6. Yang, T. Y., Tu, H. L., & Chiou, H. K. (2006). Low-voltage high-linear and isolation transformer based mixer for direct conversion receiver. In Proceedings of IEEE international symposium circuits and systems (ISCAS), (pp. 21–24).

  7. Sullivan, P. J., Xavier, B. A., & Ku, W. H. (1997). Low voltage performance of a microwave CMOS Gilbert cell mixer. IEEE Journal of Solid-State Circuits, 32(7), 1151–1155.

    Article  Google Scholar 

  8. Sullivan, P. J., Xavier, B. A., & Ku, W. H. (1999). A common source input cross coupled quad CMOS Mixer. Journal of Analog Integrated Circuits and Signal Processing, 19(2), 181–188. (Springer science).

    Article  Google Scholar 

  9. Rudell, J. C., Ou, J. J., Cho, T. B., Chien, G., Brianti, F., Weldon, J. A., et al. (1997). A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications. IEEE Journal of Solid-State Circuits, 32(12), 2071–2088.

    Article  Google Scholar 

  10. Klumperink, E. A. M., Louwsma, S. M., Wienk, G. J. M., & Nauta, B. (2004). A CMOS switched transconductor mixer. IEEE Journal of Solid-State Circuits, 39(8), 1231–1240.

    Article  Google Scholar 

  11. Chen, J. D., & Lin, Z. M. (2006). 2.4 GHz high IIP3 and low-noise down-conversion mixer. Proceedings of the IEEE Asia Pacific conference on circuits and systems, 37–40.

  12. Weste, H. E. N., & Eshraghian, K. (1993). Principles of CMOS VLSI design (Vol. 2). Reading, Massachusetts: Addison Wesley.

    Google Scholar 

  13. Johns, D. A., & Martin, K. (1997). Analog integrated circuit design. New York: Wiley.

    Google Scholar 

  14. Razavi, B. (2001). Design of analog CMOS integrated circuit. New York: McGraw-Hill.

    Google Scholar 

  15. Feng, C. H., Jonsson, F., Ismail, M., & Olsson, H. (1999). Analysis of nonlinearities in RF CMOS amplifiers. The 6th IEEE International Conference on Electronics, Circuits and Systems, 1, 137–140.

  16. Zhang, L. J., Li, W., & Yuan, J. S. (2001). CMOS RF mixer no-linearity design. Proceedings of the 44th IEEE Midwest Symposium on Circuits and Systems, 2, 808–811.

  17. Hsu, H. M., & Lee, T. H. (2006). High LO-RF isolation of zero-IF mixer in 0.18 μm CMOS technology. Journal of Analog Integrated Circuits and Signal Processing, 49(1), 19–25. (Springer Science).

    Article  Google Scholar 

  18. Heydari, P. (2006). An analysis of high-frequency noise in RF active CMOS mixers. Journal of Analog Integrated Circuits and Signal Processing, 48(3), 199–209. Springer Science.

    Article  Google Scholar 

  19. Meng, C. C., Xu, S. K., Wu, T. H., Chao, M. H., & Huang, G. W. (2003). A high isolation CMFB down conversion micromixer using 0.18 μm deep n-well CMOS technology. Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC), 619–622.

  20. Vidojkovic, V., Tang, J. V. D., Leeuwenburgh, A., & Roermund, A. V. (2005). A low-voltage folded-switching Mixer in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 40(6), 1259–1264.

    Article  Google Scholar 

  21. Park, J., Lee, C. H., Kim, B. S., & Laskar, J. (2006). Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Transactions on Microwave Theory and Technology, 54(12), 4372–4380.

    Article  Google Scholar 

  22. Lee, S. Y., Huang, M. F., & Kuo, C. J. (2006). A 5.25-GHz CMOS folded-cascode even-harmonic mixer for low-voltage applications. IEEE Transactions on Microwave Theory and Technology, 54(2), 660–669.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Chip Implementation Center (CIC) for technical support, Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Da Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JD., Lin, ZM. & Row, JS. A 5.25-GHz low-power down-conversion mixer in 0.18-μm CMOS technology. Analog Integr Circ Sig Process 62, 301–312 (2010). https://doi.org/10.1007/s10470-009-9347-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9347-1

Keywords

Navigation