Skip to main content
Log in

A Bayesian approach for optimal reinsurance and investment in a diffusion model

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A Bayesian adaptive control approach to the combined optimal investment/reinsurance problem of an insurance company is studied. The insurance company invests in a money market and a capital market index with an unknown appreciation rate, or “drift”. Using a Bayesian approach, the unknown drift is described by an unobservable random variable with a known (prior) probability distribution. We assume that the risk process of the company is governed by a diffusion approximation to the compound Poisson risk process. The company also purchases reinsurance. The combined optimal investment/reinsurance problem is formulated as a stochastic optimal control problem with partial observations. We employ filtering theory to transform the problem into one with complete observations. The control problem is then solved by the dynamic programming Hamilton–Jacobi–Bellman (HJB) approach. Semi-analytical solutions are obtained for the exponential utility case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox JC, Huang C (1989) Optimal consumption and portfolio policies when asset prices follow a diffusion process. J Econ Theory 49(1): 33–83

    Article  MathSciNet  MATH  Google Scholar 

  2. He H, Pearson ND (1991) Consumption and portfolio policies with incomplete markets and short-sale constraints: the finite-dimensional case. Math Financ 1(3): 1–10

    Article  MATH  Google Scholar 

  3. Karatzas I (1989) Optimization problems in the theory of continuous trading. SIAM J Control Optim 27(6): 1221–1259

    Article  MathSciNet  MATH  Google Scholar 

  4. Karatzas I, Lehoczky JP, Shreve SE, Xu GL (1991) Martingale and duality methods for utility maximization in a incomplete market. SIAM J Control Optim 29(3): 702–730

    Article  MathSciNet  MATH  Google Scholar 

  5. Merton RC (1971) Optimum consumption and portfolio rules in a continuous-time model. J Econ Theory 3(4): 373–413

    Article  MathSciNet  Google Scholar 

  6. Merton RC (1990) Continuous-time finance. Blackwell Publishers, London

    Google Scholar 

  7. Zhang X, Siu TK, Meng Q (2010) Portfolio Selection in the enlarged Markovian Regime-switching market. SIAM J Control Optim 48(5): 3368–3388

    Article  MathSciNet  MATH  Google Scholar 

  8. Browne S (1995) Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math Oper Res 20(4): 937–958

    Article  MathSciNet  MATH  Google Scholar 

  9. Bayraktar E, Young VR (2007) Minimizing the probability of lifetime ruin under borrowing constraints. Insurance 41(1): 196–221

    MathSciNet  MATH  Google Scholar 

  10. Liu CS, Yang H (2004) Optimal investment for an insurer to minimize its probability of ruin. North Am Actuar J 8(2): 11–31

    MATH  Google Scholar 

  11. Promislow SD, Young VR (2005) Minimizing the probability of ruin when claims follow Brownian motion with drift. North Am Actuar J 9(3): 109–128

    MathSciNet  MATH  Google Scholar 

  12. Schmidli H (2001) Optimal proportional reinsurance policies in a dynamic setting. Scand Actuar J 2001(1): 55–68

    Article  MathSciNet  MATH  Google Scholar 

  13. Schmidli H (2002) On minimising the ruin probability by investment and reinsurance. Ann Appl Probab 12(3): 890–907

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang X, Siu TK (2009) Optimal investment and reinsurance of an insurer with model uncertainty. Insur Math Econ 45(1): 81–88

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang X, Zhou M, Guo JY (2007) Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting. Appl Stoch Models Bus Indus 23(1): 63–71

    Article  MathSciNet  Google Scholar 

  16. Lakner P (1995) Utility maximization with partial information. Stoch Process Appl 56(2): 247–273

    Article  MathSciNet  MATH  Google Scholar 

  17. Lakner P (1998) Optimal trading strategy for an investor: the case of partial information. Stoch Process Appl 76(1): 77–97

    Article  MathSciNet  MATH  Google Scholar 

  18. Pham H, Quenez MC (2001) Optimal portfolio in partially observed stochastic volatility models. Ann Appl Probab 11(1): 210–238

    Article  MathSciNet  MATH  Google Scholar 

  19. Karatzas I, Zhao X (2001) Bayesian adaptive portfolio optimization. Handbook of mathematical finance. Cambridge University Press, Cambridge, pp 632–670

  20. Sass J, Haussmann UG (2004) Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain. Financ Stoch 8(4): 553–577

    Article  MathSciNet  MATH  Google Scholar 

  21. Rieder U, Bäuerle N (2005) Portfolio optimization with unobservable Markov-modulated drift process. J Appl Probab 42: 362–378

    Article  MathSciNet  MATH  Google Scholar 

  22. Bäuerle N, Rieder U (2007) Portfolio optimization with jumps and unobservable intensity process. Math Financ 17(2): 205–224

    Article  MATH  Google Scholar 

  23. Callegaro G, Di Masil GB, Runggaldier WJ (2006) Portfolio optimization in discontinuous markets under incomplete information. Asia-Pac Financ Mark 13(4): 373–394

    Article  MATH  Google Scholar 

  24. Xiong J, Zhou XY (2008) Mean–variance portfolio selection under partial information. SIAM J Control Optim 46(1): 156–175

    Article  MathSciNet  Google Scholar 

  25. Choulli T, Taksar M, Zhou XY (2003) A diffusion model for optimal dividend distribution for a company with constraints on risk control. SIAM J Control Optim 41(6): 1946–1979

    Article  MathSciNet  MATH  Google Scholar 

  26. Bäuerle Nicole (2005) Benchmark and mean–variance problems for insurers. Math Methods Oper Res 62(1): 159–165

    Article  MathSciNet  MATH  Google Scholar 

  27. Grandell J (1991) Aspects of risk theory. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  28. Højgaard B, Taksar M (2004) Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy. Quant Financ 4(3): 315–327

    Article  ADS  Google Scholar 

  29. Elliott RJ (1982) Stochastic calculus and applications. Springer-Verlag, New York

    MATH  Google Scholar 

  30. Kallianpur G (1980) Stochastic filtering theory. Springer-Verlag, New York

    MATH  Google Scholar 

  31. Rogers LCG, Williams D (1987) Diffusions, Markov processes, and martingales, vol. 2. Wiley, Chichester

    Google Scholar 

  32. Fleming WH, Soner HM (1993) Controlled Markov processes and viscosity solutions. Springer-Verlag, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Elliott, R.J. & Siu, T.K. A Bayesian approach for optimal reinsurance and investment in a diffusion model. J Eng Math 76, 195–206 (2012). https://doi.org/10.1007/s10665-011-9531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9531-z

Keywords

Navigation