Skip to main content
Log in

A semi-empirical growth model study of W–C induced by focused ion beam with a Gaussian–Holtsmarkian distribution

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Focused-ion-beam chemical vapour deposition (FIB-CVD) is a very useful direct fabrication technique for nano-structures. We focus on studying the growth model of FIB-CVD-based conducting W–C. An initial model is developed to simulate the distribution of secondary electrons generated from the collision process of ions crash into the solid. The experimental results show that the profile of the deposition has a minute but very long tail that can extend as far as 100 nm. Our model reveals that the Gaussian–Holtsmarkian distribution of the ion beam is responsible for the long tail of the profile. Additionally, the growth speed decreases as the deposition grows, since the occupancy of adsorbed gas molecules is reduced by the Joule heating effect. A semi-empirical model is finally established by revising the initial model with the experimental data. We believe the proposed model is very useful for exploring the growth mechanism and fabrication limit of FIB-CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Peinado P, Sangiao S, De Teresa JM (2015) Focused electron and ion beam induced deposition on flexible and transparent polycarbonate substrates. ACS Nano 9(6):6139–6146

    Article  Google Scholar 

  2. Zhang L, Liu H, Suo X, Tong S, Li Y, Wang Z (2017) Ion beam modification of plasmonic titanium nitride thin films. J Mater Sci 52(11):6442–6448. doi:10.1007/s10853-017-0879-y

    Article  Google Scholar 

  3. Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing. J Vac Sci Technol B 26:1197–1276

    Article  Google Scholar 

  4. Vaz VR, da Silva MM, Leon J, Moshkalev SA, Swart JW (2008) Platinum thin films deposited on silicon oxide by focused ion beam: characterization and application. J Mater Sci 43(10):3429–3434. doi:10.1007/s10853-007-2402-3

    Article  Google Scholar 

  5. Luxmoore IJ, Ross IM, Cullis AG, Fry PW, Orr J, Buckle PD, Jefferson JH (2007) Low temperature electrical characterisation of tungsten nanowires fabricated by electron and ion beam induced chemical vapour deposition. Thin Solid Films 515:6791

    Article  Google Scholar 

  6. Igaki J, Kanda K, Haruyama Y, Ishida M, Ochiai Y, Fujita J, Kaito T, Matsui S (2006) Comparison of FIB-CVD and EB-CVD growth characteristics. Microelectron Eng 83:1225

    Article  Google Scholar 

  7. Kometani R, Morita T, Watanabe K, Kanda K, Haruyama Y, Kaito T, Fujita J, Ishida M, Ochiai Y, Matsui S (2003) Nozzle-nanostructure fabrication on glass capillary by focused-ion-beam chemical vapor deposition and etching, Japan. J Appl Phys 42:4107–4140

    Article  Google Scholar 

  8. Kometani R, Koike H, Kanda K, Haruyama Y, Kaito T, Matsui S (2007) Evaluation of a bio nano-sensing probe fabricated by focused-ion-beam chemical vapor deposition for single organelle analyses, Japan. J Appl Phys 46:7963–7965

    Article  Google Scholar 

  9. Hoshino T, Watanabe K, Kometani R, Morita T, Kanda K et al (2003) Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor deposition. J Vac Sci Technol B 21:2732

    Article  Google Scholar 

  10. Punzhin S, Detsi E, Kuzmin A, De Hosson J (2014) Deformation of nanoporous nanopillars by ion beam-induced bending. J Mater Sci 49(16):5598–5605. doi:10.1007/s10853-014-8269-1

    Article  Google Scholar 

  11. Verma S, Pandey S, Gupta M, Mukherjee S (2014) Influence of ion-beam sputtering deposition parameters on highly photosensitive and transparent CdZnO thin films. J Mater Sci 49(20):6917–6929. doi:10.1007/s10853-014-8396-8

    Article  Google Scholar 

  12. Sadki ES, Ooi S, Hirata K (2004) Focused-ion-beam-induced deposition of superconducting nanowires. Appl Phys Lett 85:6206

    Article  Google Scholar 

  13. Li W, Fenton JC, Wang Y, McComb DW, Warburton PA (2008) Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. J Appl Phys 104:093913

    Article  Google Scholar 

  14. Romans EJ, Osley EJ, Young L, Warburton PA, Li W (2010) Three-dimensional nanoscale superconducting quantum interference device pickup loops. Appl Phys Lett 97:222506

    Article  Google Scholar 

  15. Córdoba R, Baturina TI, Sesé J, Mironov AY, De Teresa JM, Ibarra MR, Nasimov DA, Gutakovskii AK, Latyshev AV, Guillamón I, Suderow H, Vieira S, Baklanov MR, Palacios JJ, Vinokur VM (2013) Magnetic field-induced dissipation-free state in superconducting nanostructures. Nat Commun 4:1437

    Article  Google Scholar 

  16. Likharev KK (1979) Superconducting weak links. Rev Mod Phys 51:101–159

    Article  Google Scholar 

  17. Dai J, Onomitsu K, Kometani R, Krockenberger Y, Yamaguchi H, Ishihara S, Warisawa S (2013) Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6 and C14H10. Jpn J Appl Phys 52:075001

    Article  Google Scholar 

  18. Guillamón I, Suderow H, Vieira S, Fernández-Pacheco A, Sesé J, Córdoba R, De Teresa JM, Ibarra MR (2008) Nanoscale superconducting properties of amorphous W–C based deposits grown with a focused-ion-beam. New J Phys 10:093005

    Article  Google Scholar 

  19. Silvis-Cividjian N, Hagen C, Leunissen L, Kruit P (2002) The role of secondary electrons in electron-beam-induced-deposition spatial resolution. Microelectron Eng 61–62:693

    Article  Google Scholar 

  20. Ward JW, Kubena RL, Utlaut MW (1988) Transverse thermal velocity broadening of focused beams from liquid metal sources. J Vac Sci Technol B 6:2090

    Article  Google Scholar 

  21. Ramachandra R, Griffin B, Joy D (2009) A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109:748–757

    Article  Google Scholar 

  22. Chen P, Alkemade PFA, Salemink HWM (2008) The complex mechanism of ion-beam-induced deposition, Japan. J Appl Phys 47:5123–5126

    Article  Google Scholar 

  23. Smith DA, Joy DC, Rack PD (2010) Monte Carlo simulation of focused helium ion beam induced deposition. Nanotechnology 21:175302

    Article  Google Scholar 

  24. Rosenberg S, Barclay M, Fairbrother D (2013) Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6). Phys Chem Chem Phys 15:4002

    Article  Google Scholar 

  25. Seliger RL, Kubena RL, Olney RD, Ward JW, Wang V (1979) J Vac Sci Technol 16:916

    Article  Google Scholar 

  26. Wagner A (1983) Nucl Instrum Methods 218:355

    Article  Google Scholar 

  27. Gamo K, Takakura N, Samoto N, Shimizu R, Namba S (1984) Jpn J Appl Phys 23:L293

    Article  Google Scholar 

  28. Ishida M, Fujita J, Ichihashi T, Ochiai Y (2003) Focused ion beam-induced fabrication of tungsten structures. J Vac Sci Technol B 21(6):2728

    Article  Google Scholar 

  29. Guo D, Kometani R, Warisawa S, Ishihara S (2013) Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition. J Vac Sci Technol B 31(6):061601

    Article  Google Scholar 

  30. Cicoira F (2002) Electron beam induced deposition of rhodium nanostructures, PhD Dissertation, University of Bologna

  31. Guo D (2013) Ultra-long growth of 3D nanostructure by focused-ion-beam chemical vapor deposition, PhD Dissertation, The University of Tokyo

  32. Winkler R, Szkudlarek A, Fowlkes JD, Rack PD, Utke I, Plank H (2015) Toward ultraflat surface morphologies during focused electron beam induced nanosynthesis: disruption origins and compensation. ACS Appl Mater Interfaces 7:3289–3297

    Article  Google Scholar 

  33. Hanaor DAH, Ghadiri M, Chrzanowski W, Gan Y (2014) Scalable surface area characterization by electrokinetic analysis of complex anion adsorption. Langumir 30(50):15143–15152

    Article  Google Scholar 

  34. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Mr. Yuki Murao for his assistance with FIB experiments. This work was supported by National Natural Science Foundation of China 51502016 and the Research and Development Foundation of Science and Technology of Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Xie, S., Chang, H. et al. A semi-empirical growth model study of W–C induced by focused ion beam with a Gaussian–Holtsmarkian distribution. J Mater Sci 52, 12326–12335 (2017). https://doi.org/10.1007/s10853-017-1377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1377-y

Keywords

Navigation